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RF-Based Human Activity Recognition Using
Signal Adapted Convolutional Neural Network
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Abstract—Human Activity Recognition (HAR) plays a critical role in a wide range of real-world applications, and it is traditionally achieved
via wearable sensing. Recently, to avoid the burden and discomfort caused by wearable devices, device-free approaches exploiting
Radio-Frequency (RF) signals arise as a promising alternative for HAR. Most of the latest device-free approaches require training a large
deep neural network model in either time or frequency domain, entailing extensive storage to contain the model and intensive
computations to infer human activities. Consequently, even with some major advances on device-free HAR, current device-free
approaches are still far from practical in real-world scenarios where the computation and storage resources possessed by, for example,
edge devices, are limited. To overcome these weaknesses, we introduce HAR-SAnet which is a novel RF-based HAR framework. It
adopts an original signal adapted convolutional neural network architecture: instead of feeding the handcraft features of RF signals into a
classifier, HAR-SAnet fuses them adaptively from both time and frequency domains to design an end-to-end neural network model. We
apply point-wise grouped convolution and depth-wise separable convolutions to confine the model scale and to speed up the inference
execution time. The experiment results show that the recognition accuracy of HAR-SAnet substantially outperforms the state-of-the-art
algorithms and systems.
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1 INTRODUCTION

HUMAN Activity Recognition (HAR) has attracted a sig-
nificant amount of attentions in the past decade due

to its great value in a wide range of real-world applications,
such as health care [1], [2], fall detection [3]–[5], and smart
home [6], [7]. There are generally two types of solutions for
HAR: device-based and device-free. Device-based solutions rely
mostly on wearable devices such as smartphones and smart
watches. However, these solutions often cause discomfort
and extra burden. To overcome the weaknesses, device-free
solutions utilizing cameras and Radio-Frequency (RF) signals
have later come into view. Recently, camera-based HAR sys-
tems have achieved successes in several outdoor scenarios
thanks to deep learning, but they may not be well-accepted in
indoor environments due to the severe privacy concerns [6].
Different from camera-based solutions, RF-based approaches
do not raise privacy concerns, and are not affected by tem-
perature or lighting conditions. Therefore, RF-based solution
has become a promising candidate for indoor HAR, leading
to a large amount of research contributions recently [8]–[16].

The basic principle of RF-based HAR systems is that the
propagation paths of RF signals are affected by human body
movement, causing the reflected signals to exhibit distinct
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features pertaining to different activities. Consequently, we
can exploit these unique features to distinguish different
activities, hence significant progress on RF-based HAR has
been achieved in the past few years [8]–[14], [16]–[19]. Among
all wireless signals used for HAR, Wi-Fi is the most popular
one owning to the ubiquitous deployment [8]–[15].

Though promising, several major challenges still exist
with the state-of-the-art Wi-Fi-based approaches, hindering
the adoption of these systems in real life:

• Narrow Wi-Fi channel bandwidth leads to limited reso-
lution in differentiating activity patterns.

• While preprocessing the raw signal collected from the
hardware helps removing the signal noise, the important
signal feature containing the activity information may
also get lost.

• Low computation capability edge devices have difficulty
to achieve real-time HAR.

• Edge devices with limited memory cannot support a
large neural network running on it.

Furthermore, although Wi-Fi infrastructure is ubiquitously
deployed, the CSI information employed for HAR cannot
be retrieved from most commodity Wi-Fi hardware but only
from the Intel 5300 and several specific Atheros Wi-Fi cards,
limiting the practical adoption of Wi-Fi-based approaches.

In this paper, to address the above challenges, we employ
a Commercial Off-The-Shelf (COTS) Ultra-Wide Band (UWB)
radio module for HAR. Compared with Wi-Fi, UWB radio
has a much larger channel bandwidth and thus a much
higher time resolution. We show that the UWB module has a
comparable cheap price as the Wi-Fi card but can achieve a
much better performance in terms of both HAR accuracy and
robustness.
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For HAR, another big issue is how to extract stable
and unique features related to each activity. However, these
features depend highly on the individuals: body size and
personal habits can cause large variations [18], [19] in the fea-
tures extracted. Fortunately, resorting to Convolutional Neu-
ral Network (CNN), the complex features of various types
of signals such as images and video have been effectively ex-
tracted [20], [21]. In other words, CNN opens a new paradigm
for HAR, whose power has been demonstrated in various RF-
based HAR systems [13], [14], [16], [21]–[23]. Whereas most
of exiting systems consider either time or frequency domain
information for HAR, we propose to employ both time and
frequency domain information to achieve more accurate and
more robust performance. Essentially, we employ two CNN
branches to learn the feature representations of time and
frequency domains, respectively. Then, RF features from both
time and frequency domains are fused together to infer hu-
man activities. Therefore, our system utilizes the information
extracted from RF signals to the fullest extent.

A big issue hindering the real-life adoption of CNN-
based approaches is the high computational cost and large
storage memory requirement. In the Internet-of-Things (IoT)
era, the resource-constrained edge nodes or devices usually
do not have such a powerful computational power and the
storage memory is also limited. Take the popular Rasp-
berry Pi Zero W as an example, it has a 1 GHz, single-
core CPU (ARMv6) and 512 MB RAM [24]. Therefore, imple-
menting the proposed RF-based CNN model on a resource-
constrained edge device poses a significant challenge. To this
end, we customize each CNN block in our signal adapted
CNN model structure. In contrast to conventional camera
images that all unoccluded key-points of the human are
recorded, RF signals only get reflected from a subset of
the human body parts and the number of reflection points
is usually less than seven [25]. Due to the sparsity of RF
signals, we employ dilated convolutions [26] to encode more
effective features from RF spectrograms. Moreover, we avoid
large CNN model block, such as ResNet [20] or full connec-
tions [27] that incur larger computation and storage over-
head. Instead, we resort to efficient designs such as channel
split, grouped convolutions, depth-wise convolutions, and
point-wise convolutions. As a result, HAR-SAnet contains
only lightweight components to efficient reduce both com-
putation and storage complexity, making our design work
well on the less powerful edge devices.

We design HAR-SAnet and evaluate its performance on
ARM-based edge devices. We productize our system and it is
now ready for sale [28]. We test HAR-SAnet with over thirty
persons aged 20-45 years performing seven types of activities,
including bending, falling, lying down, standing up, sitting
down, squatting down, and walking. The experiment results
show that HAR-SAnet not only demonstrates high recall
and precision, but also achieves HAR in real time with a
small millisecond level end-to-end latency on ARM-based
resource-constrained edge devices. To summarize, we make
the following contributions.

• To the best of our knowledge, we propose the first
real-time HAR prototype involving a carefully designed
hardware and a signal processing pipeline tailored to

resource-constrained edge devices.
• To improve the accuracy, our signal adapted neural net-

work model innovates in taking into account information
from both time and frequency domains.

• We design, implement, and productize HAR-SAnet. Ex-
tensive experiments are conducted to evaluate the sys-
tem performance in diverse environments. The results
show that our system can achieve high accuracy for HAR
in real-world environments.

The paper is organized as follows. In Sec. 2, we explain
the practical challenges of existing RF-based HAR systems.
Then, we describe the details of system design in Sec. 3. In
Sec. 4, we present the implementation details as well as the
experiment results. The related work is discussed in Sec. 5,
followed by a conclusion in Sec. 6.

2 WI-FI OR UWB?
In this section, we show the practical challenges with WiFi-
based HAR systems, and we also briefly demonstrate the
superiority of adopting UWB-based technologies.

2.1 Limited Resolution
802.11 Wi-Fi is a narrowband technology employing only
20MHz-80MHz channel for data communication. To differ-
entiate human activities, time-frequency analysis such as
Short-Time Fourier Transform (STFT), and Wavelet Transform
(WT) are used to produce a time-frequency spectrogram to
differentiate different human activities. However, the channel
bandwidth fundamentally limits the time domain signal res-
olution: with a larger bandwidth, the signals have a higher
chance to be separated in time domain [29]. Consequently,
signals reflected from different body parts have a higher
chance to be separated and richer information about each
body parts can be obtained. Nevertheless, even with the latest
IEEE 802.11ac Wi-Fi standard [30], the channel bandwidth is
still quite limited (80MHz) given the need for fine-grained
HAR.

100 200 300 400

Time Sample Index

5

10

15

F
re

q
u
e
n
c
y
 S

a
m

p
le

 I
n
d
e
x

0.2

0.4

0.6

0.8

1

(a) Sitting down.

100 200 300 400

Time Sample Index

5

10

15

F
re

q
u
e
n
c
y
 S

a
m

p
le

 I
n
d
e
x

0.2

0.4

0.6

0.8

1

(b) Squatting down.

Fig. 1. The time-frequency spectrograms of two similar activities obtained
via WT based on Wi-Fi CSI.

To better understand the limitation of Wi-Fi in terms of
sensing resolution, we use the Intel 5300 Wi-Fi card [31] to
collect a few data samples of activities at a 400 Hz sampling
rate. We employ WT method to transform the signal to time-
frequency spectrograms. Fig. 1(a) and Fig. 1(b) illustrate such
spectrograms of two activities: sitting down and squatting
down. We can see that both spectrograms of these two
activities have very similar “hot” zones with higher energy.
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(a) Sit down: the 22-nd fast-time
index.
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(b) Squat down: the 22-nd fast-
time index.
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(c) Sit down: the 35-th fast-time
index.
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(d) Squat down: the 35-th fast-time
index.

Fig. 2. The time-frequency spectrograms of two similar activities obtained
via WT based on our UWB radio.

As those hot zones are to be extracted as features via deep
learning, it is error-prone to distinguish these two activities
using these spectrograms as input, especially when there is
interference and noise. Therefore, Wi-Fi, with a narrowband,
can hardly separate motions from different human body
parts. Since the narrow bandwidth leads to limited time
resolution, Wi-Fi-based systems usually process the signal
input only in frequency domain.

To combat such limitations, we propose to employ UWB
signals to obtain much richer features for more fine-grained
sensing, and we demonstrate the power of UWB signals in
Fig. 2. Owing to the large bandwidth that allows for sending
very narrow pulses (which is impossible with the narrow-
band Wi-Fi), the motions of an activity can be “sensed” by
multiple pulses. We randomly select two fast-time indices
of a pulse with each fast-time index containing 400 slow-
time samples, and we employ the WT method on slow-time
samples to obtain the time-frequency spectrogram. For more
details of fast-time and slow-time, please refer to Sec. 3.2. We
can clearly see that, for the 22-nd fast-time index as shown
in Fig. 2(a) and Fig. 2(b), the shape of the hot zones are very
different for sitting and squatting. This difference is further
amplified for the 35-th fast-time index illustrated in Fig. 2(c)
and Fig. 2(d). Essentially, the larger bandwidths we have, the
richer and more distinctive features we can obtain to help
classify activities more accurately.

2.2 Crowded Channels
Another practical issue with Wi-Fi-based sensing is that the
Wi-Fi channels are usually very crowded [32]. The accuracy
of HAR is not only related to the proposed model, but also the
quality of data. If the recorded signal has lots of interference
and noise, even though the model is very powerful, good
performance can hardly be achieved.

For existing Wi-Fi-based HAR systems, researchers usu-
ally control a dedicated Wi-Fi access point to send clean
controlled Wi-Fi packets for HAR. This is not practical in

real life because the controlled Wi-Fi packets occupy the
precious channel for data communication of the Wi-Fi AP.
The uncontrolled Wi-Fi packets can hardly be used for HAR
due to the random size, random time of arrival, and inter-
ference/noise from the surrounding Wi-Fi devices, bluetooth
devices, and microwave appliances. Moreover, smart devices
(e.g., smart speakers) also adopt Wi-Fi channels to transfer the
contents for services. Although channel hopping can improve
the signal quality, it may greatly affect the ongoing data
communication [33]. Therefore, it is safe to predict that Wi-Fi
channels will become even more crowded in the future and
they should not be competent candidates for HAR systems to
achieve robust performance.

3 SYSTEM DESIGN

3.1 System Overview
HAR-SAnet leverages RF signals for passive HAR. It is built
on a UWB radio and an edge device such as Raspberry Pi [24]
or ROCK Pi [34] as shown in Fig. 3. Both the UWB transmitter
and receiver are collocated so it is convenient for them to
be integrated into a single edge device. Note that, for Wi-
Fi-based approaches, the transmitter and receiver are always
two separated devices that are usually located at different
locations. This integration also allows the edge device to
directly control the UWB radio and to run the proposed
algorithms for activity recognition. For software component,
HAR-SAnet has two main algorithm modules.

• Signal Processing Module: This module includes the
denoising process and motion detection. After the re-
flections from the target are received by the UWB radio
and delivered to the edge device, we employ a cascading
filter to denoise the RF reflections. Motion detection is
designed to determine when the neural network model
should be activated because non-activity samples may
degrade the classifying performance of the model.

• Signal Adapted CNN: To the best of our knowledge,
there is no CNN model design to accommodate both
time and frequency domain information of RF signals
for sensing. Therefore, we design a novel CNN structure
to learn features from both time and frequency domains
and to use these features for HAR. To realize a real-time
activity recognition on edge device, a lightweight signal
adapted CNN block is designed via employing efficient
convolutions such as depth-wise dilated convolution,
point-wise grouped convolution, etc.

In the next few sections, we present the proposed RF channel
model first, and then elaborate on each component of HAR-
SAnet separately.

3.2 Modeling RF Channel
In this section, we introduce the operations of UWB radio
module. UWB impulse radio module works via transmitting
pulse signal modulated by a carrier frequency. Note that
“pulse” is loosely used, and the transmitted signal is not
truly a pulse but has a very narrow width in the time do-
main. HAR-SAnet employs a commodity UWB radio module
XETHRU [35] to capture RF signals reflected from targets.
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The system diagram of XETHRU from baseband transmitted
signal sk(t) to received signal ybk(t) is illustrated in Fig.
4. The radio architecture is different from typical In-phase
and Quadrature (IQ) sampling [35]. It only uses an in-phase
single carrier frequency for upconversion, but IQ sampling at
receiver for downconversion.

The transmitted signal, Gaussian pulse can be expressed

as s(t) = Vtx exp(− (t−Tp
2 )2

2σ2
p

) where Vtx is the pulse ampli-

tude, Tp is the signal duration, and σp = 1
2πB−10dB(log10(e))

1/2

is the standard deviation that determines the -10 dB band-
width. After upconversion, transmitted signal in time domain
at the k-th frame is given as

xk(t) = s(t− kTs) · cos(2πfc(t− kTs)) (1)

where fc is the carrier frequency, the operation · means a
scalar product, Ts = 1

fp
is the duration of the frame where fp

is the pulse repetition frequency, and s(t − kTs) = s(t). For
simplicity, we denote t = t

′
+kTs with t

′ ∈ [0, Ts], and E.q (1)
can be written as xk(t) = s(t) · cos(2πfct). The transmitted
signal xk(t) is illustrated in Fig. 5(a), and its frequency
response is shown in Fig. 5(b). The carrier frequency is 7.3
GHz, and bandwidth is 1.4 GHz.

The Channel State Information (CSI) hk(t) with multi-
paths in a typical indoor environment is shown as following

hk(t) =
P∑
p=1

αpδ
(
t− τp − τDp (kTs)− τmDp (kTs)

)
(2)

where αp is the propagation attenuation of the p-th reflection
path signal, τp is the time delay due to signal propagation,
τDp (kTs) is the time delay caused by the large-scale body
movement (e.g., the human walking) and τmDp (kTs) rep-
resents the time delay caused by small-scale body move-
ment (e.g., the chest respiration movement). Moreover, for
a transmitter-receiver collocated UWB radio, τp =

2Rp

c ,
τDp (kTs) =

2vpkTs

c , and τmDp (kTs) =
2βp(1−cos(2πγpkTs))

c
where Rp is the distance between target and the UWB
radio, c is the signal propagation speed in the air, vp is
the target movement speed, βp is the small-scale target dis-
placement (e.g., the chest displacement during respiration is
around 0.5cm) which is usually smaller than one wavelength
of radio wave and γp is the movement frequency of target.

UWB Radio + Edge Device

Human Activities

Ceiling

Processing	RF	signals

Signal	Adapted	CNN

Software

Fig. 3. An overview of HAR-SAnet.
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Fig. 4. System diagram from the baseband transmitting signal sk(t) to the
baseband received signal ybk(t).

-2 -1 0 1 2

Time (ns)

-1

-0.5

0

0.5

1

A
m

p
lit

u
d

e

(a) Time domain.

-10 -5 0 5 10

Frequency (Hz)

0.4

0.6

0.8

1

A
m

p
lit

u
d

e

(b) Frequency domain.
Fig. 5. The transmitted signal xk(t).

Moreover, the range resolution is inversely related to the
channel bandwidth and is calculated with the following
equation ∆r = c

2B where B is the bandwidth of UWB radio.
Hence, it is easy to calculate the time delay resolution as
∆τ = 1

2B . Thus, the received signals can be expressed as

yk(t) = hk(t) ∗ xk(t)

=
P∑
p=1

αp cos(2πfc(t− kTs − τp − τDp (kTs)− τmDp (kTs))

· s(t− kTs − τp − τDp (kTs)− τmDp (kTs)) + n(t) (3)

where n(t) is Gaussian noise with variance ε2 and the symbol
∗ is convolutional operation. In practice, since kTs � t,
the signal yk(t) is sampled in two dimensions: fast-time t
and slow-time kTs. The receiving baseband signals ybk(t) are
obtained after IQ downconversion. We have

ybk(t) =
P∑
p=1

αpe
2πfc(τp+τ

D
p (kTs)+τ

mD
p (kTs))

· s(t− kTs − τp − τDp (kTs)− τmDp (kTs)) + n(t). (4)

Different human activities exhibit different τp, τDp (kTs), and
τmDp (kTs) in ybk(t). Therefore, the received UWB signal con-
tains richer features for HAR.
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Fig. 6. The matrix of receiving baseband signals.

Let t = lTn represent the l-th discrete sample via Ana-
log to Digital Conversion (ADC) where Tn is the sampling
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interval. Thus, the discrete baseband signals are ybk(lTn). The
received signals can be formed as a matrix along with fast-
time and slow-time shown in Fig. 6. In general, fast-time axis
indicates time delays caused by range distance, and the slow-
time axis is used to estimate Doppler information via a long
time window observation.

3.3 Processing RF Signals
Before feeding data into the neural network, the noise caused
by hardware and environment needs to be removed to en-
hance signal quality. In addition, since our CNN model is
proposed for HAR, signal samples in the non-activity sce-
nario are removed from the training and inference stages;
otherwise such samples may introduce errors in classification.
Consequently, the RF signal processing has three main steps:
i) phase noise reducing, ii) signal SNR enhancement, and iii)
motion detection.

3.3.1 Phase Noise Reducing
The ADC of UWB signals introduces Sampling Timing Off-
set (STO) caused by imperfect sampling clock. The signal
phase perturbed by such STO will affect the Doppler and
Micro Doppler information. Doppler and Micro Doppler are
observed via slow-time kTs. If the reflection is from a static
object, the phase introduced by both Doppler and Micro
Doppler is zero. In Fig. 7(a), two subsequent raw RF signals
frames (slow-time) yk(t) with phase noise caused by STO
are reflected from a same static object. The baseband signal
after IQ downconversion ybk(t) with two subsequent frames
are shown in Fig. 7(b). We can see that the amplitude of
the second frame with phase noise has jitter, but ideally, the
amplitudes of two frames should be the same. For HAR, the
static objects may be considered as moving because of this
phase noise.
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Fig. 7. Signals with phase noise.

The phase of an object with jitter is Ωp+∆ω(t−kTs). The
phase jitter caused by STO at the radio receiver is ∆ω(t−kTs),
and the phase of signal reflected from a object is Ωp. Our
objective is to reduce the phase jitter ∆ω(t−kTs). To achieve
this objective, firstly, we need to find a reflector signal from
a static object as the reference. For instance, we can choose
the pulse with maximum amplitude. Secondly, for the K
frames, we can calculate the mean phase ω̂ of that pulse.
Then, we calculate the difference between ω̂ and phase of
the reference signal at the k-th frame. Finally, we adjust the
phases of all samples in fast-time with the above difference.
We can see that the phase with time domain noise correction
is much more stable as shown in Fig. 8. In practice, since our

system is mounted on the ceiling, the max peak of reflection is
always the floor with the largest Radar Cross Section (RCS).
Therefore, one may readily identify such reflections out of
those from other static objects to correct the phase. As the
variation in phase is very small, it barely affects the inference
results of our neural network, due to the large motions of
human activities. However, this variation could make the
training phase unstable, resulting in a longer convergence
time.

3.3.2 SNR Enhancement
The raw receiving baseband signals are corrupted by noise
as shown in Fig. 9(a). The noise brings in errors in the
neural network model. Specifically, if not properly addressed,
the random noise will be learned by the neural network
model that tends to overfitting. Consequently, we leverage
a cascading filter to remove noise and enhance the SNR of
the received baseband signal. The cascading filter includes
a low-pass filter and a smoothing filter. We first adopt a
Finite Impulse Response (FIR) low pass filter with 26 taps
and a hamming window. Then a smoothing filter with 5-
point window is applied to smooth the output from the FIR
low pass filter. Fig. 9(b) illustrates the signal output after
cascading filter, showing noise being greatly suppressed.

3.3.3 Motion Detection
Before feeding data to the classifier, we face two practical
issues: i) detect the human motion within a certain range and
ii) identify the starting point of a human activity. Fortunately,
we observe that, due to the high temporal resolution, a
human activity naturally spans several fast-time samples and
the peak power indicates a motion after removing the static
background reflections. As a result, the peak power enables
us to detect the human motion on one hand, while its fast-
time index also signals the start of a human activity on the
other hand. Next, we explain the design principle for motion
detection module.

We remove the static environment via background sub-
traction [36]. The standard deviation and peak-average
detection algorithm are employed to detect human mo-
tions. The standard deviation SD is calculated as√∑N

n=1(vi − v̄)2/(N − 1) where {v1, v2, · · · , vN} are the
observed values. For l-th pulse in fast-time, we calcu-
late the standard deviation. The standard deviation vectors
{SD1, SD2, · · · , SDL} are obtained as shown in Fig. 10.
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Fig. 9. SNR enhancement can improve the quality of signals.

There are multiple peaks in Fig. 10, and each peak indicates
one movement in the environment. The key insight is that
the wireless signals are impacted by objects in motion, and
the standard deviation of each sample in fast-time is larger
when there are motions. However, not only human create
motions, but also electronic fans, air conditioners, pets, etc.
Consequently, we design the peak-average detection algo-
rithm to avoid false alarms. Since the noise level changes both
spatially and temporally, we cannot use a fixed threshold
to detect human motion. Luckily, there is an observation
that human targets always perform larger activities than the
interferers. Consequently, the larger standard deviation in
the position is human motion. The process of the algorithm
is illustrated in Fig. 12. It is clear to see that the noise
floor threshold thmotion can be estimated by averaging the
values at all noise floor positions, and the value val at a
testing position is compared with coef · thmotionwhere coef
is a constant to adjust the threshold. Empirically, we choose
coef = 1.5 in our design. The detection output of data used
in Fig. 10 is shown in Fig. 11 which indicates a human motion
is detected.

3.4 Signal Adapted Convolutional Neural Network

The conventional CNN is designed for computer vision [21].
Although many researchers directly apply such neural net-
work to extract features for wireless sensing applications
[3], [12], [14], [15], [22], they only utilize features in time or
frequency domain [37]. Most Wi-Fi based approaches employ
frequency domain information because Wi-Fi signals contain
less time domain information due to low time resolution.
Recently, a few works such as [38] consider both time and
frequency domain information to design HAR systems, but
their system are not an end-to-end learning system. They
only use neural network to deal with frequency domain, and
extract features from time domain in a handcarft method.
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Fig. 10. The standard deviation of
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Fig. 12. The procedure of peak-average detection algorithm.

More importantly, the previous works usually need a power-
ful computer to run the CNN model and infer the activities.
Such computation-heavy CNNs have difficulties to be run on
resource-constrained edge devices. We thus propose a signal
adapted CNN to address the above two challenges in this
section.

We take the unique property of RF signals into consid-
eration to design a lightweight CNN. The dominant reflec-
tions come from different body parts as the person moves
over time. For instance, different from camera, at each time
slot, the received signals only reflect back from a subset of
body parts. To deal with these issues, we make our CNN
model aggregate information from both time and frequency
domains to extract the features for different activities. In our
design, one slow-time frame contains a total of 60 fast-time
samples, which are the delay profile of a single pulse. The
slow-time frames are sampled at 400 Hz; they are respective
signal delay profiles of consecutive pulses. Consequently, a
400 × 60 spectrogram in time domain is taken as input. To
obtain frequency domain information of signals, we perform
Fast Fourier Transform (FFT) instead of WT. The reason is
that if we perform WT on each fast-time index, the data size
is 400 × 60 ×W , where W is the number of wavelet series,
usually in the scale of 50-60. Such a large data size will incur
a huge computation overhead.

Our signal adapted CNN is a two-stream (time and
frequency) CNN architecture composed of two parts. The
simplest way to fuse two spectrograms of time and frequency
is to put those spectrograms into different two channels of an
image, and then we can feed them to the CNN. However,
in this way, the time and frequency spectrograms will cor-
respond to different pixels in the image. Therefore, in our
design, we use separated branches to extract features from
spectrograms of time and frequency, respectively as shown in
Fig. 13. In this architecture, each branch does not share the
CNN layer weights with the other. Each branch has multiple
efficient CNN blocks to abstract high level features, and three
blocks are adopted in HAR-SAnet. Each CNN block output
is followed by an activation function ReLU that is computed
via the function f(x) = max(0, x). Then, two branches are
aggregated via a concatenation operation⊕ and put into fully
connected layers fFNN(T ⊕F ) where the symbol T represents
the features of time, and the symbol F illustrates that of
frequency. Finally, a softmax function shown as following
is employed to achieve probability prediction for each class
f sm
i (X) = exi∑K

j=1 e
xj , where X = {x1, · · · , xK} is the input

vector. In the end, the input vector is normalized by the
sum of all exponential functions. Finally, we use the cross
entropy L = −

∑C
c=1 yc log(pc) as the loss function in our
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system where C is the total number of classes and pc is the
probability of the c-th class.

For resource-constrained edge device, we need to im-
plement multiple efficient CNN blocks to build the above
signal adapted model. To build an efficient model, we resort
to the power of convolution factorization. The key idea is
to employ a factorized version such as depth-wise separa-
ble convolution which consists of depth-wise convolution
and point-wise convolution [39] or group convolution [40]
to replace the traditional full convolutional operation. We
assume a standard convolution operation with an input
X ∈ RW×H×cin , a convolutional kernel K ∈ Rk×k×cin×cout ,
and an output Y ∈ RW×H×cout . For each output of a
filter W , the mathematical formulation of traditional CNN,
point-wise convolution, depth-wise convolution and group
convolution, respectively are

Conv(W ,X)(i,j) =
k∑
l=1

k∑
m=1

cin∑
c=1

W(i,j,c) ·X(i+l,j+m,c) (5)

PConv(W ,X)(i,j) =

cin∑
c=1

Wc ·X(i,j,c) (6)

DConv(W ,X)(i,j) =

k∑
l=1

k∑
m=1

W(i,j,c) ·X(i+l,j+m,c) (7)

GConv(W ,X)(i,j) =

k∑
l=1

k∑
m=1

cin/G∑
c=1

W(i,j,c) ·X(i+l,j+m,c). (8)

Moreover, the depth-wise separable convolution is

SConv(Wp,Wd,X)i,j = PConvi,j(Wp,DConv(i,j)(Wd,X)).
(9)

According to Eq. (5), we realize that for each filter, the
size of effective receptive field is k × k, and the number of
learning parameters are k2cin. For a number of cout filters,
we have a total of k2cincout parameters for the convolutional
kernel. Also, point-wise convolution in Eq. (6) and depth-
wise convolution in Eq. (7) show that the total number of
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Fig. 13. Our convolutional neural network design.

kxk SConv

Concatenate

PConv

Channel	Split

GConv

Fig. 14. The CNN block in HAR-SAnet. GConv divides different sets of
channels to perform convolution operation independently; these indepen-
dent group computing can be paralleled. Channel split separates input
channels equally to each SConv.

parameters are cincout and k2cin, respectively. Therefore,
when we use depth-wise separable convolutional operation,
according to Eq. (9), the number of parameters is significantly
decreased to k2cin+cincout [39], by smartly combining depth-
wise and point-wise convolutions.

Our efficient block architecture is illustrated in Fig. 14
based on a reduce-split-transform-merge rule. We use a 1× 1
group convolution to reduce the number of parameters of
channels from cincout to cincout

G . There are 3 layers in each
CNN block. Note that different groups can be computed in
parallel. To reduce the amount of computations, the channel
split module divides the input features into two branches.
One branch is applied with the k × k depth-wise separable
convolution, and the other is concatenated with the output
of the first branch. Finally, we use a point-wise convolution
to enable the information communication among different
channels. The features of wireless signals are not like the
camera images, and they are sparse in the spectrograms.
Hence, the dilated convolution [26] is applied in our network
block to enable large effective receptive fields.

4 IMPLEMENTATION AND EVALUATION

4.1 Implementation
Our hardware prototype includes a power supply, a 5V fan,
an SoC (System on Chip) module with Rockchip 3308 [34]
and a UWB radio module as shown in Fig. 15. We employ
a cheap commodity UWB radio XETHRU [35] to transmit
and receive UWB signals. The UWB radio is connected to the
edge device (SoC board) via Serial Peripheral Interface (SPI).
The hardware PCB is small with a size of 10.1 × 10.6 cm2

illustrated in Fig. 16. Our signal adapted CNN model is
implemented on TensorFlow [41], and our model is converted
into a compressed flat buffer with 32-bit floats using Ten-
sorFlow Lite. Thus, the model can be deployed on mobile
and edge devices. Note that for fair comparisons with other
models, we also convert other models via TensorFlow Lite.
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Fig. 15. HAR-SAnet’s hardware components. Fig. 16. The PCBs of UWB radio and SoC board. Fig. 17. Experiment setup.

4.2 Evaluation
4.2.1 Evaluation Setup
To test the generalization of our system, we ensure that
the training data and test data are different except for the
comparison study. It means that we collect data from 7
environments shown in Fig. 18, and only data from two
environments are used for training. The data of the rest 5
environments are used for testing. We collected a large data
set. The number of training samples (activities) is 15,000, and
that of testing samples (activities) is 40,000. Seven commonly
seen activities are considered in this paper including bending
(B), falling (F), lying down (L), standing up (SU), sitting down
(SD), squatting down (SQ), and walking (W). The HAR-SAnet
hardware is mounted on the ceiling to classify the activities
as shown in Fig. 17. The height of mounted UWB transceiver
is about 2.7m above the ground.

To evaluate our system, we use Accuracy, Precision, Recall
and F1 score as the metrics. For simplicity, we use TP, FN,
TN, and TP to represent True Positives, False Negatives, True
Negatives and False Positives respectively. Precision is the
ratio of the number of correctly classified activities to the
number of all classified activities i.e., p = TP

TP+FP . Recall is
the fraction of correctly classified activities over all activities
of that, i.e., r = TP

TP+FN . F1 score= 2pr
p+r is the harmonic mean

of precision and recall.

4.2.2 Activity Recognition
We evaluate the performance of HAR-SAnet with new targets
in new environments which are not included in the training
process. In this experiment, we use a 3 × 3 kernel, and to
emulate the the real scenario, we mix a large amount of
no human activity samples with activity samples. We plot
the results in TABLE 1. Even HAR-SAnet does not train in
the new environments with new human targets, the results
show that HAR-SAnet can still achieve an average of 0.965
in recall and 0.969 in precision. HAR-SAnet demonstrates the
capability of working with new targets in new environments
without further training. We also compare our design with
other state-of-the-art schemes such as XGBoost [42] and SVM
that are not based on neural network. We train all models
with the same training sets. We can clearly see from TABLE 1
that HAR-SAnet achieves much better performance than XG-
Boost and SVM in terms of all the metrics. Although XGBoost
also performs reasonably well, HAR-SAnet outperforms it
because CNN-based HAR-SAnet can capture complex time-
frequency patterns in high-dimensional data input.

TABLE 1
HAR-SAnet’s average evaluation results in UWB radio.

Precision Recall F1 Score
HAR-SAnet 0.969 0.965 0.967

XGBoost [42] 0.851 0.856 0.852
SVM (Linear) 0.452 0.460 0.455

TABLE 2
HAR-SAnet’s average evaluation results in Wi-Fi.

Precision Recall F1 Score
HAR-SAnet (Wi-Fi) 0.792 0.800 0.796

CrossSense (Wi-Fi) [27] 0.671 0.618 0.643

We further compare HAR-SAnet with the state-of-
the-art Wi-Fi-based system. We implement Wi-Fi-based
CrossSense [27] in which STFT-like analysis is used to extract
features. We mount one Wi-Fi transmitter equipped with Intel
5300 card on the ceiling to transmit, and employ another Wi-
Fi device equipped with Intel 5300 card to receive signals
on the floor. The Wi-Fi transmitter is mounted 2.7 m above
the ground. Note that CrossSense employed multiple trans-
mitters and receivers while we use only one transmitter and
receiver. While CrossSense achieves a good performance with
their own dataset which employs multiple transceiver pairs,
with our dataset with only one transceiver pair, we can see
that HAR-SAnet achieves a much better performance than the
state-of-the-art CrossSense as shown in TABLE 2. The reason
is that even though CrossSense employs transfer learning to
achieve cross-site sensing capability, the unique advantage
of HAR-SAnet is the motion detection module. The data
samples without any movement can be easily detected and
removed via motion detection module, and HAR-SAnet only
focuses on those data samples with human activities. On the
other hand, CrossSense is not able to exclude those non-
activity samples. More importantly, HAR-SAnet with UWB
radio is able to provide a much higher time delay resolution
and thus finer-grained Doppler information can be obtained.
Due to the 40 MHz narrow-band, the time delay resolution
of of Wi-Fi Intel 5300 card is 25 ns, and the corresponding
distance resolution is as large as 7.5 m. It is thus very
hard to distinguish the miniscule motions of body parts
with similar distance with respect to the sensing hardware.
Moreover, when the Wi-Fi card is mounted on the ceiling, the
Doppler shifts caused by velocities of human sitting down
and squatting down are very similar. We plot the time and
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Fig. 18. Seven environments where training and testing datasets are collected.
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Fig. 19. The power delay profile of
sitting down.
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Fig. 20. The Doppler-Range profile
of sitting down.
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Fig. 21. The power delay profile of
squatting down.
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Fig. 22. The Doppler-Range profile
of squatting down.

frequency spectrograms of the UWB signals for squatting
down and sitting down from Fig. 19 to 22. We can see that the
spectrograms of both time and frequency can be employed
to easily distinguish sitting down and squatting down. It
demonstrates that HAR-SAnet can extract rich features to
enable a fine-grained HAR.

4.2.3 Impacts of Kernel Sizes
We also evaluate the effect of different kernel sizes on HAR-
SAnet. The results are shown in TABLE 3. The interesting in-
sight here is when the kernel size increases, the performance
improves first. However, if we keep increasing the kernel size
to 9 × 9, the precision starts decreasing. The reason is that a
larger kernel size has a larger receptive field, hence HAR-
SAnet with a larger kernel size can capture more features.
But if the receptive field is too large, HAR-SAnet will end
up capturing useless noise in the spectrograms, thus the
performance degrades.

TABLE 3
Different convolution kernel sizes impact on HAR-SAnet.

Kernel size Precision Recall F1 Score
3× 3 0.969 0.965 0.965
5× 5 0.980 0.980 0.978
7× 7 0.984 0.980 0.984
9× 9 0.982 0.979 0.982

4.2.4 Impacts of Height
We mount UWB transceiver at different heights including
2.2 m, 2.7 m, and 3.5 m to evaluate the system performance.
We train the model with a 3×3 kernel size using the datasets
collected at the height of 2.7 m, and test the performance at
the other two heights. The results are shown in TABLE 4.

TABLE 4
Different heights impact on HAR-SAnet.

Height Precision Recall F1 Score
2.2m 0.957 0.957 0.957
2.7m 0.969 0.965 0.965
3.5m 0.930 0.922 0.926

All results for height 2.2 m are very close to those for 2.7 m.
However, for the height of 3.5 m, the results are slightly
worse. We believe the reason is that the reflected RF signals
from human body become weaker when the sensing device
is mounter higher, introducing slightly more errors in HAR-
SAnet.

4.2.5 Motion Detection
We use two metrics to evaluate the accuracy of motion
detection: True Positive Rate (TPR) and False Alarm Rate
(FAR). TPR is the ratio between the number of times when
HAR-SAnet correctly detects the human motion and the total
number of observed motions. FAR is the ratio of the number
of times when HAR-SAnet wrongly detects a motion to the
number of times when there is no motion.
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Fig. 23. Motion detection range with true positive rate.

HAR-SAnet can detect motions successfully within the
horizontal range of 5 meters. When a target enters this range,
his or her motion can be accurately detected. The TPR results
are shown in Fig. 23. We calculate each TPR bar in Fig. 23
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using 200 activity samples collected at different positions but
with the same distance. The target moves away from the
sensing hardware from 1m. We can see that as long as the
distance between the target and the sensing device is below
5m, the motion detection accuracy is always 100%. We the
distance is increased to 7 meters, the TPR value starts to
decrease. The reason is that the transmission power of all
UWB devices is regulated by the Federal Communications
(FCC) in the US and the European Telecommunications Stan-
dards Institute (ETSI) in the Europe. The maximum allowed
mean equivalent isotropically radiated power (EIRP) spectra
density is -41.3 dBm/MHz [43], and is only around 0.1%
of the density allowed for Wi-Fi [44], [45]. Thus, the radio
coverage range is now in the scale of room level. In the future,
we plan to explore the possibility of employing LoRa signal
to significantly increase the sensing range to building level.

We also measure the FAR of HAR-SAnet. The FAR is very
low at a rate of 0.083 false alarms per hour. We record the
human motions to measure the FAR in 24 hours a day when
no one moves in the sensing range. During one week, there
are only a total of 14 false alarms. We believe these rare false
alarms are due to the suddenly increasing noise levels.

4.2.6 Ablation Study
Our signal adapted CNN structure includes two branches
that deal with time and frequency domain features, respec-
tively. To better understand the effectiveness of our model, we
need to conduct ablation study under the same experiment
condition. To fairly study each branch of our model, we
use the same signal adapted CNN architecture to evaluate
a single domain. The results are illustrated in Fig. 24. The
precision of time domain is 0.88, and that of the frequency
domain is 0.91. Our signal adapted model combines both
time and frequency domains into two branches, and is able
to obtain a much higher precision of 0.97. Similar to precision,
the recall and F1 score of our signal adapted model outperform
other single domain designs. Our model improves over single
time and single frequency domain by an average of 10% and
6.5%, respectively. Hence, considering information from both
time and frequency domains is effective in improving the
performance of the neural network design.

4.2.7 Comparison with the state-of-the-arts
In this section, we study the efficiency of various CNN
blocks in HAR-SAnet. We compare the CNN block adopted
by HAR-SAnet with three state-of-the-art baseline blocks:
MobileNetv1 [39], MobileNetv2 [46] and a traditional CNN
(tCNN) with three layers [38]. We train all these models
with the same datasets, and test them on edge device in
real time scenarios. MobileNetv1 and MobileNetv2 are state-
of-the-art CNN design for mobile and edge devices from
Google. We use them to replace the CNN block in HAR-
SAnet, and measure the execution time and energy cost of
the whole system. We use TensorFlow Lite to compress HAR-
SAnet, MobileNetv2, MobileNetv1, and tCNN into 8-bits
representations. We use SoC module to infer 1000 activities
and record the execution time of each inference. The boxplots
of those model execution time and energy cost are shown in
Fig. 25, and Fig. 26, respectively. We also present the accuracy,

average execution time, and energy cost per inference in
TABLE 5, where accuracy is the ratio of correctly classified
activity samples over all samples. It is observable that HAR-
SAnet achieves a comparable (actually slightly better) accu-
racy while bearing a much lower complexity (8 to 3 times
lower than others).

TABLE 5
Comparison of several network architectures over complexity (time and

energy) and classification accuracy.

Complexity (s) Energy (µJ) Accuracy
HAR-SAnet 0.016 5.80 0.974

MobileNetv1 [39] 0.071 15.40 0.960
MobileNetv2 [46] 0.044 24.92 0.963
Traditional CNN 0.111 38.57 0.967

We have also looked at the theoretical complexity charac-
terized by the Float-Point OPerations (FLOPs) metric, which
has surprisingly shown a similar count (around 0.08 million
FLOPs) for all four CNN blocks. It appears that, though
different CNN blocks share similar FLOPs, their runtime
complexity differ a lot. The reason is that the CNN computing
is not only determined by the computing operations, but also
by memory swap. For instance, tCNN spends more time in
memory swap than the other blocks designed specifically for
running on edge device.

5 RELATED WORK

Past work on activity recognition can be grouped into two
categories: wearable-based and non-wearable-based schemes.
For wearable-based schemes, notable examples include
smartphones and accelerometers [47]–[49]. However, people,
especially the elderly are usually reluctant to wear wearables
because of skin irritation and they often forget to wear the
devices [1], [4]. On the other hand, non-wearable scheme was
proposed to address the above limitations. Camera-based so-
lutions [50], [51] can achieve accurate activity recognition, but
the privacy and narrow field of view are the issues hindering
their wide deployment. Audio-based solutions [5], [52], [53]
can achieve highly accurate sensing performance due to the
low propagation speed in the air. However, these systems are
vulnerable to the acoustic noise and interference around us
and the sensing range is usually very limited (below 1m).

Our work is most related to RF-based solutions. Exist-
ing work on device-free HAR can be divided into three
categories: Received Signal Strength Indicator (RSSI)-based,
CSI-based and radar-based solutions. The RSSI-based solu-
tions rely on the fact that the human activities can cause
signal strength change. RSSI-based HAR systems leverage
the unique signal strength changes to classify activities [8],
[54], [55]. However, since the RSSI readings are very coarse,
such systems can only recognize the coarse-grained human
activities, and the achieved accuracy is relatively low.

Recently, CSI-based solutions have attracted a lot of at-
tentions in RF-based HAR [8]–[14], [17], [56]. These solutions
apply the STFT or wavelet transforms to estimate the signal
changes caused by target velocity [9], [12]. They expect that
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the velocities of different body parts can be used to classify
the activities via machine learning or deep learning. How-
ever, CSI-based solutions pose some significant limitations.
For instance, the limited Wi-Fi bandwidth cannot separate
reflections from different body parts. Hence, the features
which can be used to distinguish activities are limited. More-
over, CSI readings can only be retrieved from two types of
commodity 802.11n Wi-Fi cards (Intel 5300 [31] and Atheros
9390 network interface cards (NICs) [57]).

Radar technology is also leveraged to classify human
activities [3], [16], [18], [19], [21], [22], [58]. The authors in [16],
[18], [19], [22] use one-dimensional feature such as Micro-
Doppler or Doppler information to recognize human activ-
ities. Thus, same as CSI-based solutions, one-dimensional
feature limits the performance of HAR. Some other work
[3], [21], [59] employ a specialized hardware, USRP to im-
plement a Frequency-Modulated Continuous-Wave (FMCW)
radar system with a large antenna array to classify human ac-
tivities and demonstrate high accuracy of activity recognition.
However, these specialized devices are usually expensive
and there is a huge gap in terms of price and functionality
between the software-defined radio hardware platform and
cheap COTS hardware. We would like to realize HAR with
cheap commodity hardware.

Furthermore, most of existing research work employ a
powerful computer to realize HAR. It is not always practical
because most edge devices have a limited storage and a
limited computational power. HAR-SAnet is not only a COTS
solution but also designs lightweight neural network model
for resource-constrained edge devices. Last but not least, we
believe that the UWB radio can be further utilized to drive
other sensing applications, such as replacing Wi-Fi for indoor
localization [60], [61] and already being applied to vibration
and vital sign monitoring [62], [63].

6 CONCLUSION

In this paper, we propose a HAR system hosted on COTS
UWB radio. Owing to the large bandwidth of UWB radio,
our system can obtain richer motion features from RF signals
compared to Wi-Fi-based solutions. To make our system
work with resource-constrained edge device, a signal adapted
convolutional neural network model is designed to extract
features and classify activities without handcraft. The system
is evaluated in multiple real-life environments and compre-
hensive experiments demonstrate that HAR-SAnet can obtain

a precision of 96.9% and a recall of 96.5%. We believe the
proposed methods can benefit a large range of other sensing
applications. In the future, we plan to extend HAR-SAnet to
MIMO UWB radio systems to explore the boundary of the
sensing capability.
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