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ABSTRACT
Vital signs are crucial indicators for human health, and researchers
are studying contact-free alternatives to existing wearable vital
signs sensors. Unfortunately, most of these designs demand a sub-
ject human body to be relatively static, rendering them very in-
convenient to adopt in practice where body movements occur fre-
quently. In particular, radio-frequency (RF) based contact-free sens-
ing can be severely affected by body movements that overwhelm
vital signs. To this end, we introduce MoVi-Fi as a motion-robust
vital signs monitoring system, capable of recovering fine-grained vi-
tal signs waveform in a contact-free manner. Being a pure software
system, MoVi-Fi can be built on top of virtually any commercial-
grade radars. What inspires our design is that RF reflections caused
by vital signs, albeit weak, do not totally disappear but are compos-
ited with other motion-incurred reflections in a nonlinear manner.
As nonlinear blind source separation is inherently hard, MoVi-Fi in-
novatively employs deep contrastive learning to tackle the problem;
this self-supervised method requires no ground truth in training,
and it exploits contrastive signal features to distinguish vital signs
from body movements. Our experiments with 12 subjects and 80-
hour data demonstrate that MoVi-Fi accurately recovers vital signs
waveform under severe body movements.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools.
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1 INTRODUCTION
Vital signs (particularly heartbeat and breath) are representative
indicators on human physical and mental status [6, 12], so novel
applications such as sleep monitoring [53], fatigue detection [61],
and emotion recognition [60] all rely on vital signs awareness. Ap-
proaches for monitoring vital signs can be roughly categorized into
contact and contact-free sensing; the former often relies on wear-
able sensors (ranging from smartwear to medical devices) to detect
micro-activities (either mechanical or electrical) of human bod-
ies [57]. Unfortunately, the contact nature makes people uncomfort-
able and may even affect vital signs. Therefore, contact-free sensing
has attracted increasing attention from both academia and indus-
try [3, 26, 29, 36, 46, 48, 51–53, 55], in which radio-frequency (RF)
sensing leveraging various commercial-grade radars has demon-
strated a promising future [3, 17, 26, 29, 53, 61].

Although exploiting different media (e.g., light [10, 37, 55], RF [3,
26, 29, 36, 53, 61], and sound [46, 48, 52]), contact-free vital signs
sensing shares a common technical basis: analyzing the reflected
signals excited by the micro-activities of human bodies. Therefore,
these approaches are subject to the same “curse” of body move-
ments, simply because these high-energy motions may overwhelm
the micro-activities caused by vital signs in signal space. Although
RF is known to be more tolerable to background noise than other
media, prior RF-sensor designs rely on customized yet sophisti-
cated hardware [26, 32, 33, 44, 54], making it very hard for system
developers to reproduce their results. Consequently, existing RF-
based system developments mostly focus on refining the granularity
of sensing outcome [3, 17, 29, 36, 53, 61], while discarding those
contaminated by body movements and thus leaving motion-robust
monitoring as an open problem.

To better understand the damaging effect of body movements
on extracting vital signs, we compare two cases in Figure 1. In
both cases, an IR-UWB radar [5] is placed in front of the subject,
where the subject walks with a speed of 1 m/s on a treadmill in
case (a) but sits statically in case (b). Even with the most up-to-
date approach [17] to recover the heartbeat waveform, the motion-
corrupted RF signal in case (a) cannot yield correct results compared
with case (b). It is also worth noting that, whereas the breath wave-
form for case (b) is conspicuous even in raw RF signal, it is also
corrupted by body movements in case (a). In reality, it is impractical
to force a subject to remain static during monitoring for two major
reasons. On one hand, we do need to monitor vital signs of a moving
subject (e.g., walking-on-treadmill or typewriting); though sophis-
ticated medical equipment can be used for this purpose [15, 43], we
may not have access to such equipment in our daily life. On the
other hand, a subject may move unconsciously (e.g., turning-over
during sleep); existing approaches suspend vital signs monitoring
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Figure 1: Heartbeat waveform recovery (a) with and (b) with-
out body movements.

when such body movements are detected [3, 56]. Therefore, it is
imperative to endow RF-sensing with motion-robustness, so as to
deliver practical vital signs monitoring solutions.

In this paper, we present MoVi-Fi, a contact-free sensing sys-
tem for Motion-robust Vital signs monitoring, with Fi indicating
the outcome as fined-grained waveforms. We design MoVi-Fi as
a pure software system readily deployable onto virtually all types
of commercial-grade radars (including both IR-UWB and FMCW)
adopted by existing research proposals [3, 17, 61]. Such a cross-
technology design makes MoVi-Fi independent of any hardware
features such as the center frequency, number of antennas, and
sampling rate, as far as the bandwidth is sufficiently wide. The
advantage of MoVi-Fi being cross-technology is evident: different
RF technologies can be chosen to suit specific applications, for ex-
ample, IR-UWB (at 7GHz range) for extended sensing scope (e.g.,
through walls) and FMCW (at mmWave range) for finer-grained
but close-by monitoring. Meanwhile, MoVi-Fi’s motion-robustness
is confined by the capability of RF technologies: it works only if a
subject’s front upper body lies within the sensing scope.

The major challenge faced by designing a motion-robust vital
signs RF-sensing system is the complex composition among various
motions in the reflected signal space. In particular, large-scale body
movements and the micro-activities (e.g., neck vibrations) caused
by vital signs are not composed in an additive manner. First, for
limb movements (e.g., typewriting) not taking place at the spots of
micro-activities, the compositions in signal space manifest in both
amplitude and phase, which is apparently nonlinear. Second, torso
movements (e.g., walking-on-treadmill) may change the positions
of the micro-activity spots, causing the composition to be extended
beyond the current range dimension. Last but not least, the reflected
signals caused by body movements can exhibit various statistical
properties (e.g., non-stationary or cyclostationary), which cannot
be readily separable by a single type of algorithm.

To solve above challenges in a cross-technology manner, we
take the following steps to gradually construct MoVi-Fi into a soft-
ware framework driven by an end-to-end deep learning pipeline to
recover vital signs waveform.

• We first perform a detailed analysis on the two types of main-
stream radars, thus deriving a unified vital signs RF-sensing
model for capturing the motion-excited reflection signals. In
particular, we realize that, though bandwidth is essential to
offer a fine sensing resolution, center frequency and antenna
number do not seem to be crucial factors.

• In order to better understand the nature of body movements
(hence their impacts on the signal space pertinent to vital
signs), we conduct a study on several common instances. We
first clarify the feasible scope of body movements, then we
categorize thesemovements into three types, namely stationary
(e.g., typewriting), cyclostationary (e.g., walking-on-treadmill),
and non-stationary (e.g., standing-up/sitting-down), so that
any complex movements can be formed as their combinations.
We also study each of these types in terms of how they interfere
with vital signs in the reflected signal space.

• It is clear from the earlier studies that the body movement
type is a key to the whole signal separation process. To this
end, we propose two novel self-supervised contrastive-learning
algorithms to exploit the distinct patterns of various movement
types. In particular, these contrastive-learning algorithms lever-
age the temporal and spatial diversities in the signal space to
properly distinguish and thus separate the interference of body
movements from the micro-activities excited by vital signs.
Finally, we design an encoder-decoder module trained by a
discriminator, in order to reproduce the fine-grained waveform
of both heartbeat and breath.

We implement MoVi-Fi on top of three typical commercial-grade
radars: i) Novelda’s XeThru X4 at 7.29GHz [5], ii) Infineon’s Posi-
tion2Go at 24GHz [4], and iii) Texas Instruments (TI)’s IWR1443
at 77GHz [23]. We evaluate MoVi-Fi on 12 subjects under 8 body
movements, obtaining over 380,000 heartbeat and breath cycles.
All these experiment results clearly demonstrate the accuracy and
motion-robustness of MoVi-Fi in every scenario. In summary, we
make the following major contributions in this paper:

• To the best of our knowledge, MoVi-Fi is the first RF-sensing
system capable of recovering fine-grained vital signs wave-
form under major body movements.

• MoVi-Fi is designed as a pure software system readily deploy-
able onto virtually any types of commercial-grade radars, so
as to suit different application requirements.

• Inspired by a detailed investigation on common body move-
ments, MoVi-Fi is equipped with a carefully engineered end-
to-end deep learning pipeline; it contains novel contrastive-
learning models to distill vital signs, and it also employs an
encoder-decoder model to refine vital signs waveform.

• We implement MoVi-Fi as a software prototype and test it
upon 3 popular radar platforms; the extensive evaluation
results evidently demonstrate MoVi-Fi’s motion-robustness
in recovering fine-grained vital signs waveforms.

To avoid losing the focus on motion-robustness, we do not aim
to extract details (e.g., cardiac cycle events) out of the recovered
waveform. As MoVi-Fi has exhibit promising ability in recovering
vital signs waveform under body movements, we leave the more
detailed event extractions to an extended development that lever-
ages existing proposals (e.g., [17]). In the following, we first survey
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the literature in Section 2, then we provide a detailed exposition on
constructing MoVi-Fi from scratch in Section 3. We explain imple-
mentation details in Section 4 and report performance evaluations
in Section 5, before finally conclude our paper in Section 6.

2 RELATEDWORK
As contact sensing either avoids motion interference by resorting
to signals largely immune to such interference [15, 43] or applies
conventional filtering to remove interference [27, 59], we focus on
discussing contact-free vital signs monitoring, which has witnessed
a substantial amount of developments in the past decade. Whereas
RF is the mainstream sensing medium, light (hence computer vi-
sion) [10, 37, 55] and sound [46, 48, 52] are also adopted. Among
all RF-sensing approaches, we differentiate between sensor design
(e.g., [32, 33, 54]) and system development (e.g., [3, 17, 29, 36, 53, 61]):
whereas the former focuses on developing radars and equip them
with proper signal processing algorithms, the latter aims to build
working prototypes based on commercial-grade RF platforms.

Sensor design community has a rather long history on studying
motion-robust vital signs monitoring. Early proposals rely on tricky
placements of two radars to handle the interference from body
movements [28, 33, 44, 47]. However, these proposals are far from
practical as a strict synchronization between the two radars are
needed (yet hard to achieve), while those tricky placements can
be very unrealistic to achieve in our daily environments. Later
proposals have shifted their focus to signal processing techniques,
in order to avoid hardware complications [32, 45, 54]. Tu et al. [45]
extract only breath rate out of unrealistic 1-D body movements.
Lv et al. [32] propose a matched filter to cope with body movements,
but their method relies on a strong assumption on the existence of
quasi-static periods during movements. Latest proposal [54] applies
adaptive noise cancellation to handle body movements, yet their
evaluations, without even specifying what body movements are
involved, are highly questionable in validity.

Given the unsatisfactory progress from the sensor design com-
munity, system developers decide to build their own vital signs
monitoring systems based on commercial-grade radars.1 Most ex-
isting systems have been developed to estimate coarse-grained vital
signs via RF signals [3, 25, 36, 53, 61]; they leverage either time
or frequency analysis to estimate the breath or heart rate within
a sliding time windows. Recent papers [14, 17, 29] have utilized
FMCW radars to recover the fine-grained heartbeat waveform, re-
lying on delicate signal processing and deep learning techniques,
respectively. Although these systems have made a sound progress
in refining the monitoring granularity towards even clinic-level
applications, all of them require a subject to remain relatively static,
i.e., they all lack motion-robustness.

Other contact-free methods are either vision-based or acoustic-
based. Vision-basedmethod for vital signsmonitoring is also termed
remote photoplethysmography (or rPPG); it always adopts a camera
to capture video of a subject and then analyzes the subtle color
changes on the facial regions of the subject to derive heart rate [10,
37, 55]. The acoustic-based method is convenient to monitor vital
signs since smartphone can be used to readily produce and analyze

1We neglect the literature on Wi-Fi based respiration sensing [1, 51, 58], as communi-
cation systems may not serve the long-term monitoring purpose.

acoustic signals [46, 48, 52]. While [46, 48] are only able to monitor
respiration rate, [52] recovers the fine-grained breath waveform
using deep learning. It is interesting to note the complimentary
nature between vision and acoustic methods: the former works
for heartbeat but the latter excels in breath. Unfortunately, both
methods are highly susceptible to background interference and may
sometimes incur the privacy concerns. Most importantly, they still
cannot offer a full-scale motion-robustness.

3 DESIGNING MOVI-FI
We design MoVi-Fi in three steps. We first unify the RF-sensing
model in Section 3.1, so that MoVi-Fi can operate across different
radar platforms. Then we study the common body movements
in Section 3.2, mostly in terms of how they get composited with
micro-activities in signal space. Finally, we elaborate the construc-
tion of MoVi-Fi to achieve motion-robust vital signs monitoring in
Section 3.3.

3.1 Modeling RF Reflections
Equivalent Sensing Model for Radars. RF reflections are repre-

sented by the RF Channel Impulse Responses (CIRs) from transmit-
ter to receiver, and time delays are the main elements in CIRs. To
understand how various motions affect CIRs, we first model the
signal propagation distance that causes variations in time delays:

𝑑(𝑡 ) = 𝑑 + 𝑑b(𝑡 ) + 𝑑r(𝑡 ) + 𝑑h(𝑡 ), (1)

where 𝑑 is the mean distance between a radar and a subject, while
𝑑b(𝑡 ), 𝑑r(𝑡 ), and 𝑑h(𝑡 ) are variations respectively caused by body
movement, respiration, and heartbeat. The key idea to detect above
distance variations with RF signals is to extract the amplitude and
phase changes of CIR. Given a transmitted waveform 𝑠(𝑡 ), the re-
ceived signal becomes:

𝑦(𝑡 ) = 𝛼(𝑡 )𝑒−𝑗2𝜋 𝑓c
2𝑑 (𝑡 )
𝑐 𝑠

(
𝑡 − 2𝑑(𝑡 )

𝑐

)
, (2)

where the 𝑐 represents the speed of radio wave, and 𝑓c is the carrier
frequency. Though there could be multiple reflection paths, radar-
based RF-sensing considers only the direct path provided that no
other objects block the subject [13, 29].

Although 𝑠(𝑡 ) differs in the two popular waveforms (i.e., IR-UWB
and FMCW) adopted by radars, 𝑦(𝑡 ) has the same 2-D CIR matrix
representation, with the two dimensions respectively denoted as
fast-time and slow-time due to different time scales of sampling [62].
Basically, IR-UWB and FMCW is a time-frequency dual pair: while
the former leverages time-domain pulse positions (in fast-time di-
mension) to indicate distances, the latter exploits frequency-domain
pulses (obtained via FFT) to reach the same goal. As the fast-time
samples indicate distances, they are often termed range bins (or bins
for short). Consequently, both radars essentially have the same dis-
tance resolution determined by 𝑐

2𝐵 with 𝐵 denoting the bandwidth
(i.e., how narrow a pulse is). For a certain bin, multiple samples
are acquired from consecutively received frames 𝑦𝑖 (𝑡 ), 𝑖 = 0, 1, · · ·.
As the frames (resp. samples) are transmitted (resp. acquired) at a
much lower rate (e.g., 512Hz), they form the slow-time dimension.

Spatial Diversity is Limited. Whereas IR-UWB often has only
one antenna pair, FMCW is commonly equipped with an antenna
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Figure 2: Beamforming spec-
trum of TI IWR1443.
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Figure 3: Swaying body from
left to right.

array. For example, TI’s FMCW radar has 3 tx and 4 rx antennas,
forming 12 tx-rx pairs. However, our experiment results in Figure 2
show that the beamforming effect of all these antenna pairs leads to
an equivalent 3dB-beamwidth of at least 15◦. Considering 𝑑 = 1𝑚
between the radar and a subject, the field of view (FoV) is already
about 30cm (i.e., half of the body width). Therefore, the diversity
provided by these antenna pairs barely offers a sharp focus on only
the micro-activities excited by vital signs. In addition, our experi-
ment results in Section 5.2.5 also show that a narrow FoV may not
favor motion-robustness. It is true that the beamforming capability
can be very useful in monitoring multiple subjects. Nonetheless, as
we focus on motion-robust monitoring for a single subject in this
paper, we deem the 2-D CIR matrix as the essential input for deriv-
ing vital signs, but we make use of the antenna arrays whenever
available via the beamforming scheme proposed in [17].

Motion Impact on Signal Space. Since 𝑑r(𝑡 ) and 𝑑h(𝑡 ) are both
periodic with low frequencies, they cannot be captured by the se-
quence of bins, but are rather “hidden” in the slow-time dimension
of certain bins and represented by signal phase changes [3, 17, 61].
Their impact on the amplitude is often neglected due to their minor
scales compared with 𝑑 . Different from vital signs incurring 𝑑r(𝑡 )
and 𝑑h(𝑡 ), body movements affect both fast- and slow-time samples
via 𝑑b(𝑡 ) with a wider bandwidth, and they also alter the signal
amplitude 𝛼(𝑡 ). Figure 3 shows that a subject swaying-body causes
the CIR matrix to change in all aforementioned three dimensions.
Apparently, the impact of body movements on the CIR matrix is
much more complicated than that imposed by vital signs, which
significantly handicaps the existing techniques in extracting vi-
tal signs waveform. As an example, we monitor vital signs of a
subject under both static and dynamic (i.e., playing smartphone
games) situations, using an extended version of RF-SCG [17] and
two different radars. Figure 4 shows the average relative errors (see
Section 5.2.1 for the detailed definition of this quantity) of the four
cases; the performance is clearly much worse in the dynamic case.
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Figure 4: Estimating breath and heart rates with (w/) and
without (w/o) body movements.

3.2 Understanding Body Movements
We first use Figure 5 to state the scope of body movements. Essen-
tially, we require that i) the subject does not turn back to the radar,
ii) the center of gravity of the subject’s body is confined within the
FoV of a radar, and iii) the distance 𝑑(𝑡 ) between the radar and the
subject lies within a reasonable range (e.g., ±30cm) around its mean
𝑑 . While the first two conditions forbid the subject to drastically
change his/her posture (e.g., from standing to lying), the last one
prevents body movements from significantly altering the subject’s
position, as otherwise the radar has to keep track of the subject.
Under these requirements, we can categorize the common body
movements into three types: stationary, cyclostationary, and non-
stationary. Note that the micro-activities incurred by vital signs
are cyclostationary with very low strength, and an arbitrary body
movement can be formed by a certain combination of these types.

Radar

Figure 5: Motion scope in terms of the radar FoV.

Figure 6 uses the CIR matrices (heatmaps) to illustrate the four
types of body activities, with the small top-right figures aggregat-
ing the slow-time variations over a set of hot-zone bins. We first
use playing-phone (games) in Figure 6a as a representative for the
stationary type (similar to but not Gaussian noise). This type may
also include typewriting and leg shaking. The cyclostationary type
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Figure 6: Four common body activity types: (a) stationary
(e.g., playing-phone), (b) cyclostationary (e.g., walking-on-
treadmill), (c) non-stationary (e.g., standing-up and sitting-
down), and (d) sitting statically with only cyclostationary vi-
tal signs waveform.
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is exemplified by walking-on-treadmill in Figure 6b, which typi-
cally includes various physical exercises (e.g., swaying-body) with
a rhythm. Standing-up/sitting-down suddenly, as demonstrated
in Figure 6c, are certainly non-stationary due to their burstiness.
Another typical non-stationary case is turning-over during sleep, a
long-term obstacle for over-night vital signs monitoring [30, 56].
Whereas vital signs are “buried” under above major body move-
ments, they can be clearly visible in Figure 6d when the subject
remains relatively static.

We further measure the heart rates under six typical body move-
ments using a template matchingmethod [17]. As shown in Figure 7,
all body movements cause large errors in measuring heart rates.
While the motion strength seems to contribute to the magnitude of
errors, the source of the errors is unclear given that vital signs are
largely independent of body movements: if they were superposed
linearly, the template matching method should be able to extract
vital signals properly. To verify if the linearity holds, we take the
ground truths of the vital signs waveform recorded simultaneously
with CIR matrices under body movements using a wearable sen-
sor [34]. We then leverage Singular Value Decomposition to remove
noises and obtain the reference waveform. If the superposition in
the CIR matrices between body movements and vital signs were
linear, the bin vectors should have high correlation coefficients with
the reference waveform. We calculate all correlation coefficients
under body movements and normalize them against their respec-
tive static correlation coefficients; the results shown in Figure 8,
with certain coefficients close to 0.1, unfortunately prove that the
composition is far from linear.

Without linear composition, existing solutions (all with related
assumptions) are bounded to fail, and we need to look for nonlinear
separation schemes for eliminating the impact of body movements.
Fortunately, such a separation is intuitively plausible for a few rea-
sons, even for body movements sharing the same cyclostationary
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Figure 7: The average relative errors of heart rate under dif-
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Figure 8: The normalized correlation coefficients of vital
signs waveform under different body movements.

nature with vital signs. First of all, they may have different fea-
tures, such as distinct frequencies, phases, and/or different level of
randomness (e.g., heartbeat is definitely more regular than body
movements). Secondly, both breath and heartbeat have special time-
domain patterns that certainly do not appear in body movements.
Last but not least, as different motions take place at slightly dif-
ferent locations, the high range resolution provided by wideband
radars may capture this subtlety.

3.3 Constructing MoVi-Fi
According to earlier analysis, this section constructs MoVi-Fi with
the following key components.

• Data Preprocessing: Given a CIR matrix formed in Sec-
tion 3.1 as the raw input from an arbitrary radar, MoVi-Fi
further adjusts it and also determines the type of the inter-
fering body movements.

• Separating Stationary Motions: A deep contrastive learn-
ing approach is exploited to compare the original time se-
quences with their randomized versions; it essentially lever-
ages the nonlinear mapping ability of a neural feature ex-
tractor to reverse the nonlinear composition between body
movements and vital signs.

• SeparatingNon-stationaryMotions: For cases dominated
by bursty motions, a different contrastive method is adopted
to discriminate between distinct time segments of the same
sequences; it only removes the burstymotions, but has to rely
on the previous module to separate heartbeat from breath.

• Fine-grainedWaveformRecovery: After largely suppress-
ing the impact of body movements, certain residual noises
may still persist. This final component applies an encoder-
decoder module to refine and merge the resulting time se-
quences, in order to recover the vital signs waveform.

3.3.1 Data Preprocessing. According to Section 3.1, RF sensing
data can be represented as a CIR matrix [𝑦1(𝑡 ), · · ·𝑦𝑖 (𝑡 ), · · · , 𝑦𝑚(𝑡 )]𝑇
where 𝑡 indexes the (fast-time) bin and 𝑖 is also a temporal index
but for the slow-time dimension. In order to facilitate further sepa-
ration, MoVi-Fi reforms this matrix so that it deems a set of bins
indexed by 𝑗 ∈ {1, 2, · · ·} as observations, with each observation
containing a time sequence 𝑦 𝑗 (𝑡 ) where 𝑡 now becomes the tempo-
ral index for slow-time. Essentially, the CIR matrix is transposed
to become 𝒚(𝑡 ) = [𝑦1(𝑡 ), · · ·𝑦 𝑗 (𝑡 ), · · ·𝑦𝑛(𝑡 )]𝑇 , as shown in Figure 9
(left). The width of 𝒚(𝑡 ) is termed processing window (taken as 20
seconds in our current implementation). Basically, while the index 𝑡
keeps increasing during a continuous monitoring session, MoVi-Fi
applies a sliding window so that samples are processed in segments.
Although all bins are potential observations, MoVi-Fi only takes 𝑛
(row) of them within a hot-zone for the sake of efficiency; we leave
the details on recognizing the hot-zone to Section 4. Consequently,
we hereafter denote the hot-zone in a CIR matrix by 𝒚(𝑡 ).

The next step is to determine the nature of the body movements
represented by𝒚(𝑡 ). Essentially, both stationary and cyclostationary
types are treated as stationary, i.e., having time dependent (espe-
cially periodic) but latent features. MoVi-Fi differentiates stationary
and non-stationary cases by employing autocorrelation, so as to
handle them differently. The rationale is that the autocorrelation
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curves of stationary signals barely decay, but the decay is signif-
icant for those from non-stationary signals. We empirically set a
decay threshold to construct a hypothesis test for this sake.

3.3.2 Separating Stationary Motions. According to our analysis in
Section 3.2, vital signs are very hard to detect under body move-
ments, because their composition in 𝒚(𝑡 ) is highly nonlinear. As
a result, commonly used source separation algorithms, in particu-
lar independent component analysis (ICA), fail to work in this case,
mainly due to their assumption of linear composition. Essentially,
given a set of source signals (including those excited by vital signs
and body movements) 𝒙(𝑡 ) = [𝑥1(𝑡 ), · · · 𝑥ℓ (𝑡 ), · · · 𝑥𝑚(𝑡 )]𝑇 , the func-
tion f : 𝒚(𝑡 ) = f (𝒙(𝑡 )) can be highly complex and nonlinear. As
noted by [20], trying to reverse f may lead to an infinite number of
solutions and is hence an ill-posed problem.

Fortunately, recent progresses in deep learning indicate that,
under certain mild conditions, reversing f is possible with the help
of a deep contrastive learning [9, 19]. In particular, with conditions
i) independent sources and ii) time dependent features (i.e., dif-
ferent manifestations of cyclostationarity in our case), contrastive
learning aims to train an approximation of f−1 by maximizing
the difference between observations and certain purposefully con-
structed contrastive instance. As illustrated in Figure 9, the workflow
of MoVi-Fi starts with a time-dependent extension of the obser-

vations: 𝒛(𝑡 ) =
[

𝒚(𝑡 )
𝒚(𝑡 − 𝜏)

]
, where 𝜏 is a time-translation to be

specified in Section 4. Then a contrastive instance set is constructed
with the original observations in the top half and the bottom half

being a random permutation of the top half: 𝒛★(𝑡 ) =
[

𝒚(𝑡 )
𝒚(𝑡∗)

]
,

where 𝑡∗ represents a random time index. This contrastive set has
the same marginal distribution as 𝒛(𝑡 ), but its temporal structure
is heavily corrupted in the bottom half (the lower-right part of
the input in Figure 9). The rationale is that, by drawing sample
(column vector) pairs from 𝒛(𝑡 ) and 𝒛★(𝑡 ) and contrasting them via
a cross-correlation-like metric applied to the two halves of each
sample, recognizing the vital signs waveform “hidden” in 𝒚(𝑡 ) be-
comes possible. Of course, simple cross-correlation fails to work
due to the nonlinearity in signal composition (see Figure 8), so we
resort to a deep neural network to achieve the separation.

Given 𝒛★(𝑡 ) and 𝒛(𝑡 ) as two contrastive datasets with natural
labels (i.e.,★ or not), we train a multilayer perceptron (MLP) model

𝑔 ◦ h(·) to discriminate which dataset an arbitrary sample 𝑧𝑡 comes
from. Here 𝑧𝑡 is a column vector sampled from either 𝒛★(𝑡 ) or 𝒛(𝑡 )
at a random time index 𝑡 , and 𝑔(·) performs a binary classification
by minimizing a cross-entropy loss, relying on the output of the
feature extractor h(·). Intuitively speaking, as a sample from 𝒛(𝑡 )
has its two halves highly correlated but one from 𝒛★(𝑡 ) totally
loses such a temporal structure, a successfully trained h(·) has to
reproduce the temporal structure for a sample drawn in 𝒛(𝑡 ), in order
to effectively distinguish it from samples drawn in 𝒛★(𝑡 ). As the
most compact characterization of this temporal structure boils down
to separating the original signals and recovering their respective
temporal features, it is plausible to deduce that the discrimination
by 𝑔 works best when h separates the source signals. Because two
of these reproduced cyclostationary features are introduced by vital
signs, h may well approximate f−1 that maps 𝒚(𝑡 ) back to 𝒙(𝑡 ), or
𝒙 ′(𝑡 ) as a scaled version of 𝒙(𝑡 ).

Training this contrastive model is totally self-supervised without
ground truth vital signs waveform provided by wearable sensors;
this is particularly important as otherwise acquiring training data
would be much more difficult. Also, whereas contrastive learning
for visual interpretation [9] may demand excessive training data,
our approach is far more frugal as it handles only 1-D time se-
quences. After sufficiently training the model 𝑔 ◦ h(·) (see Section 4
for training details), it can take an observation 𝒚(𝑡 ) and let h(·) di-
rectly output the decomposed 𝒙(𝑡 ). However, several issues remain:
i) what about non-stationary body movements? ii) although we are
sure that the vector function h(·) produces the decomposed 𝒙(𝑡 ),
we have no idea which neurons output the vital signs waveform
(similar situation happens to ICA in linear cases), and iii) as MoVi-Fi
is meant for continuous vital signs monitoring, yet the hot-zone𝒚(𝑡 )
is taken within a processing window, then how to merge the con-
secutive pieces of decomposed vital signs waveforms? We handle
these issues in the following subsections.

3.3.3 Separating Non-stationary Motions. Non-stationary body
movements create bursty temporal patterns, so the temporal corre-
lation structure leveraged in Section 3.3.2 is not applicable anymore.
Nonetheless, it is indeed this temporal burstiness that allows us
to adapt a different deep contrastive scheme [18] to tackle it in
a relatively straightforward manner. The essence of contrastive
learning is to properly create contrastive training instances some-
how characterizing signal features. For stationary signal sources in
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Figure 9: The workflow of separating walking-on-treadmill from vital signs: the resulting heartbeat and breath waveforms
marked in distinctive colors are evidently periodic and close to our common-sense perception.
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Section 3.3.2, this contrastivity has to be artificially produced. For-
tunately, non-stationary sources are by default temporarily varying
(hence having time contrastivity). In other words, we can lever-
age the temporal independent structure created by non-stationary
motions to generate natural contrastive datasets without the need
for data augmentations. Figure 10 shows the partial workflow of
separating non-stationary motions, omitting the procedure of sep-
arating heartbeat from breath using h obtained in Section 3.3.2.
Basically, we first divide the observations 𝒚(𝑡 ) : 𝑡 = 1, 2, · · · ,𝑇 into
𝐾 segments with an equal length; let 𝒚𝑘 denotes the 𝑘-th segment
and 𝑘 also serves as the natural class label for this segment; i.e., 𝒚𝑘
is both the 𝑘-th dataset and the 𝑘-th class. We now train another
neural model 𝑔 ◦ h′(·) to correctly classify a sample 𝑦𝑡 (a column
vector drawn from 𝒚(𝑡 ) at a random index 𝑡 ) into its own segment.
Consequently, the output of the feature extractor h′(·), given 𝒚(𝑡 )
as the input, should be a linear combination of the source signals
𝒙(𝑡 ), as proven in [18]. In fact, as vital signs are statistically very
different from the bursty body movements, the vital signs wave-
form are still combined in the output of h′(·) and hence need to be
further separated by h(·) introduced in Section 3.3.2. The structure
of 𝑔 ◦ h′(·) is simpler due to a low demand in capacity.
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Figure 10: The partial workflow of separating standing-
up/sitting-down from vital signs.

3.3.4 Fine-grained Vital Sign Waveform Estimation. MoVi-Fi aims
to recover fine-grained vital signs waveform applicable to clinic-
level applications, and it should do so continuously under body
movements. Although the above algorithms separate body move-
ments and vital signs in each processing window, two problems
still require further attention, i.e., select correct waveforms from
the output of h(·), and merge consecutive pieces of waveforms.

Since the reconstructed waveforms of breath and heartbeat ex-
hibit a much higher periodicity than others, we apply FFT on each
waveform output by h(·) and calculate the ratio between the peak
power and the residue. Then a hypothesis test is performed on the
ratio using an empirically set threshold to select vital signs wave-
form. In practice, though the selected waveforms contain sufficient
features of vital signs, their shapes may still need to be refined to
assimilate vital signs waveform under static situation. To tackle this

⋯ ⋯

Encoder-decoder

Discriminator

L1 loss

Ground truth

Figure 11: VS-Net for merging and refining vital signs wave-
form, with an encoder-decoder architecture.

problem while merging waveforms from consecutive processing
windows, we adopt an encoder-decoder model shown in Figure 11
to regenerate fine-grained vital signs waveform.

The waveform recovery is conducted for heartbeat and breath
separately, but using the same neural model. Each time two con-
secutive (yet partially overlapped, see Section 3.3.5) waveforms
are taken as input, and the encoder-decoder model reproduces a
continuous waveform at the output. We have compared the conven-
tional encoder-decoder architecture against another one with skip
connections between mirrored layers (i.e., U-Net [40]); it appears
that the conventional one is already sufficient. Therefore, our VS-
Net adopts the basic encoder-decoder model. However, commonly
used loss functions for comparing the model output with ground
truth are often based on 𝐿1 or 𝐿2 norms; they generally lead to
smoothed waveforms that may lose details. Therefore, we learn
from the patchGAN discriminator [24] to run a sliding-window con-
volutionally across the two waveforms and take the aggregation of
all responses to produce the discrimination.

3.3.5 Summary. We hereby summarize the entire pipeline of MoVi-
Fi. Initially, the (raw) input data from a radar are regulated to the
uniform format discussed in Section 3.1. To strike a balance between
resolution and latency, a 20-second sliding (processing) window
is taken with 25% overlap between consecutive ones to sample
the continuous data stream into a sequence of 𝒚(𝑡 ). MoVi-Fi then
determines the nature of the body movements, and it sends 𝒚(𝑡 )
to respective separation procedures (i.e., h or h ◦ h′) explained in
Sections 3.3.2 and 3.3.3. The distilled waveforms are in turn fed to
VS-Net (Section 3.3.4) to perform merging and refining, in order to
finally produce fine-grained vital signs waveform.

4 IMPLEMENTATION
Hardware Implementations. Our MoVi-Fi prototype is built on three
typical radar platforms. First, Novelda’s IR-UWB radar X4M05 [5]
operates at 7.3 or 8.7GHz with 1.5GHz bandwidth; it has a pair of
tx-rx antennas with an FoV of 65◦ in both azimuth and elevation
angles. Second, Infineon’s FMCW radar Position2Go [4] works
at 24GHz with 200MHz bandwidth; it has 1 tx antenna and 2 rx
antennas; each has a 76◦ azimuth and 19◦ elevation FoV. Third, TI’s
FMCW radar IWR1443BOOST [23] works at 77GHz with at most
4GHz bandwidth; it has 3 tx antennas and 4 rx antennas, each with
a 56◦ azimuth and 28◦ elevation FoV. For unifying the data format
of 𝒚(𝑡 ), all radar outputs are sampled at 512Hz along the slow-time
dimension for each range bin. Whereas the TI radar requires a
special DCA1000 module [22] to capture real-time data, we develop
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a driver on Raspberry Pi to interface the other two radars using
C/C++; it receives data and feeds them to a PC with an i9 CPU,
16GB DDR4 RAM, and a GeForce RTX 2070 graphics card.

Software Implementations. We implement MoVi-Fi based on C/C++
and Python 3.7, with the neural network components built upon
TensorFlow 2.0 [16]. To align the starting time of ground truth
and 𝒚(𝑡 ) to a 𝜇s level, we use Ethernet to synchronize the clocks
between hardware components (i.e., wearable devices and radars)
based on Precision Time Protocol [21]. To achieve cross-technology
data pre-processing (given diversified sensing packets delivered
from different radars), we implement an abstraction signal data
interface before the deep learning pipeline to mask this diversity.
The following are more implementation details promised earlier.
• The hot-zone 𝒚(𝑡 ) (i.e., the number 𝑛 of observations) is recog-
nized by constant false alarm rate (CFAR) [2], a common algo-
rithm for radars to detect subjects against noise and interference.

• The time-translation 𝜏 for separating stationary motions is set to
be between one sample interval and 1.5 seconds, so as to retain
time-dependent features (e.g., within one breath cycle or a few
heartbeat cycles).

• For separating non-stationary motions, the segment length 𝑇 /𝐾
is taken as 5 seconds, because it likely contains one breath cycles
(and hence several heartbeat cycles).

• Both h and h′ adopt an MLP model (6 layers for h and 5 layers
for h′), with leaky ReLU as the activation function after every
layer to add nonlinearity. Another two-layers MLP serves as
the classifier 𝑔. We set the batch size to 512 for training, and
use Stochastic Gradient Descent optimizer with learning rate,
momentum, decay step, and decay factor set to 0.001, 0.9, 5e5,
and 0.999, respectively.

• Although both h and h′ are, in principle, sufficiently trained
(offline) with several representative bodymovements, re-training
them for adapting to new movement types can be efficiently
conducted given their self-supervised nature.

• An encoder layer of VS-Net adopts three CNN kernels of sizes
3 × 3, 7 × 7, and 11 × 11 in a parallel manner to deliver a multi-
resolution ability. The layer properties are: stride 1, padding 0,
and dilation 1. All outputs with different kernel sizes are concate-
nated to fed to the subsequent maxpooling layer with a kernel
size 2. A decoder layer uses the same kernels as the encoder
but connects them sequentially. The discriminator is composed
of three convolutional layers with an input size matches the
waveform length. We adopt an 𝐿1 loss for waveform matching
and a logistic loss for binary classification during training. The
batch size is set to 64, and an Adam optimizer with a learning
rate of 0.001 is used.

5 PERFORMANCE EVALUATION
In this section, we report a thorough evaluation on MoVi-Fi in
several scenarios and under various parameter settings.

5.1 Experiment Setup
To evaluate MoVi-Fi, we recruit 12 subjects (6 women and 6 men),
with ages between 15 and 64 and weights in the range of 50 to 80kg.
All subjects are healthy, and they are monitored under their natural

(a) Exercising. (b) Sleeping.

Figure 12: Another two experiment scenarios.

states without any forceful influence; our experiments have essen-
tially followed the IRB protocol of our institute. We ask the subjects
to perform 8 common human body movements: playing-phone,
typewriting, swaying-body, leg-shaking, walking-on-treadmill, ex-
ercising, standing-up/sitting-down, and turning-over (during sleep),
as well as 1 quasi-static sitting posture, all in our daily life envi-
ronments such as gym, meeting room, and bedroom; see Figures 1
and 12 for four examples on the test sites.

We use wearable devices NeuLog [34, 35] to collect ground truth
in all scenarios, with breath sensed by a chest strap, and heartbeat
explained later. The RF sensing radars are placed within a range of
0.5 to 2m from a subject (exact range may vary for individual trials).
We conduct data collections with different time spans, but guarantee
roughly the same total time for each subject. These include minute-
long tests (e.g., walking-on-treadmill), hour-long observations (e.g.,
typewriting), and over-nightmonitoring (e.g., sleepingwith turning-
overs). All these amount to a 80-hour dataset of RF and ground truth
recordings, including about 330k heartbeat cycles and 68k breath
cycles. We first collect 30% of these data involving only 2 women,
2 men, and 3 body movements (typewriting, swaying-body, and
standing-up/sitting-down) for training the deep learning modules,
then the remaining 70% are collected (involving all subjects and
movements) with MoVi-Fi operating in parallel to recover vital
signs waveform online (leveraging the trained modules).

Given radars’ ability in sensing 1-D motions/vibrations, we be-
lieve that the heartbeat waveform captured by the slow-time di-
mension of CIR matrix 𝒚(𝑡 ) is defined by the clinical term blood
volume pulse (BVP): it represents the volume changes in blood
passing through a certain blood vessel, apparently driven by heart-
beat [31, 38]. Therefore, the ground truth sensor [34] is chosen
to measure photoplethysmography (PPG) via earlobe or finger tip,
the most commonly used wearable sensing method to obtain BVP.
Though we are the first to study motion-robust RF vital signs mon-
itoring, we still establish a baseline for comparison; it applies the
RF-SCG method [17] to recover BVP waveform. We refrain from
considering acoustic sensing methods [42] as baselines, because
they cannot handle heartbeat monitoring.

5.2 MoVi-Fi Performance
5.2.1 Micro-benchmarking. We hereby evaluate the signal separa-
tion performance of MoVi-Fi with its contrastive learning modules,
taking IR-UWB (X4M05) as the radar sensor. We first use Figure 13a
to illustrate the outcome of signal separation given exercising as the
body movements and RF referring to a typical bin slice in𝒚(𝑡 ), then
we report the overall quality of extracted vital signs waveforms in
the other two subfigures of Figure 13. For the latter, we use relative
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Figure 13: Waveform examples (a), and statistics on rate er-
rors (b) and waveform similarities (c) for both vital signs.

error, defined as the ratio between absolute error and the ground
truth rates, to indicate the accuracy of estimating breath and heart
rates. We compute the respective rates by using an FFT and identify
the peak frequencywithin the known range around 0.2Hz for breath
and 1.2Hz for heart. While this metric only characterizes accuracy
in event-level (i.e., average peak interval), we further use cosine
similarity to measure the similarity between recovered waveforms
and their corresponding ground truth waveforms. These metrics
shall be adopted throughout the performance evaluation.

The example shown in Figure 13a is relevant as it demonstrates
that breath can become less “visible” to Doppler-based RF-sensing:
the exercise practiced by our subjects [8] involves twisting upper-
body around and hence causes the radar to face body sides some-
times; we specifically let the subject slow down to give a clear view
of this phenomenon. Our experience indicates that, while breath
is sensed via chest vibrations, it is highly probable that common
carotid arteries (through human neck) cause the most conspicuous

BVP to be detected by radars. Therefore, breath signs may some-
times disappear but heartbeat signs always remain unless a subject
turns back to the radar. The overall performance of the extracted
waveforms can be deemed as satisfactory, because they almost per-
fectly capture the correct rates (Figure 13b), but the shape of these
waveforms can still be rough due to the residual noise (Figure 13c).
Therefore, further polishing via VS-Net is needed.

5.2.2 WaveformRecovery. We then evaluateMoVi-Fi’s performance
in recovering vital signs waveform under all 8 body movements,
again using the IR-UWB radar. Similarly, we first provide two ex-
amples, before reporting overall statistics, in Figure 14, where the
prefix r, g, and b denote MoVi-Fi’s recovery results, ground truth,
and baseline, respectively. All curves are re-scaled to fit their frames
for clear exposition. The results evidently demonstrate the excellent
robustness of MoVi-Fi against body movements, while the baseline
generally fail to obtain meaningful results; it makes sense as RF-
SCG was not designed for motion-robustness. Although the ground
truth is supposed to be motion-robust by relying on PPG, the re-
sults in Figure 14b reveal its minor limitation: body movements can
still interfere PPG, if the contact sensor is not applied properly, to
the extent of erasing a few heartbeat cycles, but MoVi-Fi manages
to maintain its performance even during these “difficult” periods.
Breath waveforms from both MoVi-Fi and ground truth match each
other and exhibit perfect motion-robustness.

The two body movements shown in Figure 14, albeit both in-
terfering vital signs monitoring, yield different levels of hardness
for MoVi-Fi to handle. Typewriting barely causes neck movements
and hence the interference takes place solely in signal propagation,
whereas walking may change the neck position, causing far com-
plicated interference. As an SCG ground truth sensor [17] requires
on-body accelerometers, its motion-robustness is far inferior to that
of PPG, hence SCG ground truth are not valid (for both training and
verification purposes) under body movements. Therefore, instead
of recovering SCG-related waveforms [17, 39, 49], we adopt BVP
that is equally useful to clinical studies as SCG, as they are both
strongly correlated with electrocardiogram (ECG) [38].
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(a) Waveform recovery from typewriting.
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(b) Waveform recovery from walking-on-treadmill.

Figure 14: Examples of vital signs waveform recovery under two stationary body movements.
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Figure 16: Cosine similarity
to ground truth.

The overall performance evaluations on both vital signs under
all 8 types of body movements are reported in Figures 15 and 16.
Apparently, MoVi-Fi performs significantly better than the baseline,
evidently proving its motion-robustness. In addition, the slight
discrepancy between MoVi-Fi and the ground truth (under both
metrics) should be attributed to the minor defects of both; the
ground truth sometimes may miss cycles if the sensor clipper is not
tightly applied, as shown in Figure 14b.

5.2.3 Impact of Body Movements. In order to study how individual
body movement types affect the performance of MoVi-Fi, we specif-
ically look into the MoVi-Fi’s heartbeat monitoring performance
against each body movement in Figures 17 and 18. For brevity,
we hereafter use the following abbreviated names for the 8 move-
ments: PP (playing-phone), TW (typewriting), SW (swaying-body),
LS (leg-shaking), WT (waking-on-treadmill), EX (exercising), SS
(standing-up/sitting down), and TO (turning-over). It is rather in-
tuitive to observe that PP and LS lead to the least impact on the
performance, as the body parts involved in the movements are far
from the neck. Therefore, it is equally reasonable to expect that
WT, EX, and SS cause the worst performance (in relative sense), as
they both lead to the back and forth motion of necks.

To better evaluate the quality of heartbeat waveform recovery,
we specifically verify if heart rate variability (HRV) can be captured
by the waveforms, because HRV is a crucial feature of cardiac cycles:
a high HRV often indicates greater cardiovascular fitness [41]. As
HRV checks the natural variation among interbeat intervals (IBIs),
we first report the absolute errors of IBI against respective body
movements in Figure 19, where intervals of a recovered waveform
are individually compared against their corresponding ground truth
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Figure 17: Relative errors of heart rates under different body
movements.
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Figure 18: Cosine similarity of heartbeat waveform to
ground truth under different body movements.
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Figure 19: Absolute errors of heartbeat IBI under different
body movements.
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Figure 20: Absolute errors of heartbeat SDNN under differ-
ent heart rate ranges.

intervals. In reality, what really matters is not the value of individual
IBIs, but rather the statistics on HRV, such as SDNN (the standard
deviation of IBI) [41]. Therefore, we further evaluate SDNN in
Figure 20, where statistics are grouped according to heart rate
ranges. Although the IBI errors in Figure 19 have media values up
to 40ms (5% of a 800ms nominal IBI), the resulting SDNN errors are
negligibly small with values largely below 10ms. Because a subject
with a SDNN value beyond 100ms or below 50ms is respectively
deemed as healthy and unhealthy, the minor SDNN errors reported
in Figure 20 would barely alter any clinical judgement.
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Figure 21: Heartbeat waveform recovery under non-
stationary body movements (i.e., SS).

In order to further illustrate the performance of MoVi-Fi under
non-stationary body movements, we choose SS as an example and
report the various waveforms in Figure 21, with motion periods
marked by dash boxes. These results also show that, whereas ground
truth can be affected by suddenmovements if not properly collected,
MoVi-Fi still survives them thanks to the contact-free sensing mode
and time contrastive separation.

5.2.4 Cross-Technology Transfer. As claimed earlier, MoVi-Fi is
a pure software system readily deployed onto any commercial-
grade radars. In this section, we demonstrate the cross-technology
transferability of MoVi-Fi in two steps. We first show that this trans-
ferability can be achieved by retaining not only the same software
architecture but also the trained deep learning modules. Remember
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Figure 22: Cosine similarity of (a) breath and (b) heartbeat
after a rough cross-technology transfer.

that we produce the earlier results using the IR-UWB radar, so
now we directly migrate the whole suit of codes onto another two
radars; the evaluation results are shown in Figure 22. Although
some degradation can be expected, the performances of a roughly
transferred MoVi-Fi on other radars are still rather satisfactory, and
the heartbeat waveform delivered by the TI’s FMCW radar is still
far better than that achieved by the baseline (specifically designed
for this radar but without motion-robust consideration).

We further improve the performance on the TI’s FMCW radar
by re-training the deep learning modules using the data collected
by the new radar. The outcome for a specific body movement (SW)
is illustrated in Figure 23 and the performance under all types of
body movements are summarized in Figure 24. As expected, a well-
trained MoVi-Fi performs better on the 77 GHz radar (than the
IR-UWB radar in Figure 18) thanks to a higher carrier frequency,
yet the performance improvement is minor because the higher
sensitivity equally takes in more motion interference.

5.2.5 Time/Spatial Diversity Gains. We first take the IR-UWB radar
to verify the time diversity gain in terms of involving different
numbers of range bins in the hot-zone. Essentially, we fine-tune the
parameter of the CFAR algorithm (see Section 4) to select different
rows (bins) in the hot-zone, representing signals reflected at slightly
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Figure 23: Heartbeat waveform recovery under body sway-
ing (SW) using the 77GHz mmWave radar.
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Figure 24: Heartbeat monitoring performance on 77 GHz
radar under different body movements.
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Figure 25: Cosine similarity of (a) breath and (b) heartbeat
under different number of involved range bins.
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Figure 26: Cosine similarity of (a) breath and (b) heartbeat
under different number of rx antennas.

different distances. As body movements may disperse the vital
signs excited signals to several neighboring bins, involving more
bins should be beneficial, as shown in Figure 25 (from 3 bins to 5
bins). Nonetheless, further involving more bins may only benefit
relatively large-scale movements (e.g., WT and SS) but not others,
as only interference can be introduced if the range covered by these
bins exceed those of the movements. This later effect explains the
overall negative trend, particularly to heartbeat, of involving 7 bins
in Figure 25.

We further evaluate the spatial diversity gain using TI’s FMCW
radar (with a 3×4 antenna array) in Figure 26, where we fix one
tx antenna and varying the number of rx antennas. We observe
that, while using more rx antennas brings marginal improvement
to breath sensing, it appears to affect heartbeat sensing negatively
(according to the medians, but averages are slightly increased). As
explained in Section 3.1, involving more antennas should narrow
the beam, improving the SNR but also reducing the FoV. Therefore,
spatial diversity does help under body movements (e.g., TW) that
barely affect the neck position, but it hinders otherwise. In the
following, we switch back to the IR-UWB radar to report MoVi-Fi’s
performance under other factors, as the corresponding results on
other radars are similar.

5.2.6 Impact of Different People. We separate the 12 subject into
five groups: 20 (15-24), 30 (25-34), 40 (35-44), 50 (45-54), and 60
(55-64), and each group contains 2 subjects except 30 and 40 that
both have one more subject. The results in Figure 28 demonstrate
the ability of MoVi-Fi in generalizing across different age groups
(only samples from 20 and 40 groups are used for training), but
also indicate a curious “peak” for the 40 group. Though the limited
number of subjects may cause a bias, we suspect that the relatively
stabilized constitution in that age group could be a factor.

5.2.7 Impact of Sensing Distance. We ask two subjects to perform
SW (a movement that may require a different sensing range) at
different distances from 0.5m to 2m, as reported in Figure 28. As
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Figure 27: Cosine similarity of (a) breath and (b) heartbeat
under different age groups.

0.5 1 1.5 2
Distance(m)

0.7

0.8

0.9

1

Si
m
ila
rit
y

(a) Breath.

0.5 1 1.5 2
Distance(m)

0.7

0.8

0.9

Si
m
ila
rit
y

(b) Heartbeat.

Figure 28: Cosine similarity of (a) breath and (b) heartbeat
under different distances.

expected, while both vital signs are negatively affected by an in-
creasing sensing distance, heartbeat suffersmore, because themicro-
vibrations excited by these two signs have different strengths.

Since we keep recording RF signals when these subjects change
their distances, we may also report a continuous monitoring when
subjects move within the range of 0.3 m to 2.5 m. Though this
monitoring violates the motion scope defined in Section 3.2, we
apply two makeshifts to get around the violated constraints. On
one hand, as MoVi-Fi cannot monitor a subject turning back to
it, we let the subjects walk backward when moving away. On the
other hand, as the range spans well beyond the scope of ±30cm
during the whole process, we compensate this by involving about 30
bins/observations in total but sampling at 6 sequential time points
to obtain 6 partially overlapped hot-zones each containing 7 bins.
As a results, MoVi-Fi operates as usual to extract waveforms from
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Figure 29: Heartbeat waveform recovery when subjects
move towards and away from the radar.

individual hot-zones and to merge the outcome using VS-Net. The
example output of MoVi-Fi in Figure 29a is chosen to emphasize
the impact of distance change on the waveform quality, though
typical results (especially in terms of heartbeat waveform) often
degrade less evident in distance. Also, it is reasonable to observe
in both Figures 29b and 29c that MoVi-Fi’s overall performance
during actual walking (albeit within a short distance) is similar to
the average performance of SW shown in Figure 28.

5.3 Discussions
As the first software RF-sensing system achieving motion-robust
vital signs monitoring, MoVi-Fi certainly leaves quite a few di-
rections to be further explored. First of all, we are yet to extract
important cardiac events from the recovered vital signs waveform;
this should be readily achievable with sufficient clinical data and
the labelling technique proposed in [17]. Second, we have not made
use of the fine-grained waveforms to infer related human physical
conditions (e.g., breath volume, blood pressure, and blood oxygen
level). However, we believe that latest research outcome (e.g., [7])
may certainly help MoVi-Fi to close the gap between vital signs and
the related physical conditions. Third, MoVi-Fi’s motion-robustness
is currently confined by the sensing scope of a single radar, so it
is worth investigating how the capabilities of multiple radars can
be synthesized so as to extend the coverage of MoVi-Fi. Finally, we
have only focused on a single subject so far, and monitoring multi-
ple subjects is certainly a more challenging issue, especially with
the motion-robustness requirement. We are planning to exploit the
spatial diversity offered by large-scale antenna arrays [11, 63] to
approach this topic.

6 CONCLUSION
Although contact-free vital signs monitoring have been studied
for years, how to achieve it in a motion-robust manner is still an
open problem. In order to close this gap, we have designed and
implemented MoVi-Fi as a contact-free RF-sensing prototype. In
order to forge MoVi-Fi into a software system that delivers motion-
robustness by leveraging pure algorithmic analytics, we have made
several relevant contributions. First, we have unified the sensing
data captured by various radars, making MoVi-Fi independent of
underlying hardware platforms. Second, we have conducted a se-
rious study on the composition between body movements and
the micro-vibrations excited by vital signs; the outcome is a mo-
tion categorization that assists further algorithm designs. Third,
we have explored and innovatively extended the recently devel-
oped deep contrastive learning framework, so as to separate the
nonlinear signal composition in a self-supervised manner without
the need for ground truth labels. Our extensive evaluations have
clearly demonstrated the strong competence of MoVi-Fi in achiev-
ing motion-robust vital signs monitoring under real-life scenarios.
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