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ABSTRACT
Radio-Frequency (RF) based device-free Human Activity Recog-

nition (HAR) rises as a promising solution for many applications.

However, device-free (or contactless) sensing is oftenmore sensitive

to environment changes than device-based (or wearable) sensing.

Also, RF datasets strictly require on-line labeling during collection,

starkly different from image and text data collections where human

interpretations can be leveraged to perform off-line labeling. There-

fore, existing solutions to RF-HAR entail a laborious data collection

process for adapting to new environments. To this end, we propose

RF-Net as a meta-learning based approach to one-shot RF-HAR;

it reduces the labeling efforts for environment adaptation to the

minimum level. In particular, we first examine three representative

RF sensing techniques and two major meta-learning approaches.

The results motivate us to innovate in two designs: i) a dual-path

base HAR network, where both time and frequency domains are

dedicated to learning powerful RF features including spatial and

attention-based temporal ones, and ii) a metric-based meta-learning

framework to enhance the fast adaption capability of the base net-

work, including an RF-specific metric module along with a residual

classification module. We conduct extensive experiments based on

all three RF sensing techniques in multiple real-world indoor envi-

ronments; all results strongly demonstrate the efficacy of RF-Net

compared with state-of-the-art baselines.
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(a) Wiping (time) (b) Walking (time)

(c) Wiping (frequency) (d) Walking (frequency)

Figure 1:Wi-Fi CSI heatmaps of two different activities: wip-
ing the board and walking around. It is virtually impossible
to intuitively recognize them by human eyes.

1 INTRODUCTION
Recently, Human Activity Recognition (HAR) has been attract-

ing attention increasingly in both academia and industry, giving

its promising potential in real-world applications such as smart

home [11, 20, 24], health care [13, 16, 27], and fall detection [22,

52, 60]. Generally, two categories for HAR have been explored:

device-based (or wearable) and device-free (or contactless). Device-
based HAR leverages the wearable devices such as smart phones or

watches to recognize human activities [4, 19, 27, 53]. However, it

may cause discomfort and extra burden, which leads to the alterna-

tive method of device-free HAR. This later method exploits camera-

based image data [21, 36, 37], acoustic/ultrasonic signals [17, 58, 63],

and Radio-Frequency (RF) signals [11, 26, 75] to achieve HAR.

Research efforts leveraging the efficacy of deep learning have

been intensively carried out on camera-based approaches [35–37],

but exploiting image data bears a risk of privacy infringement

especially in private places [20]. Meanwhile, acoustic/ultrasonic

sensing often requires bulky devices and incurs a high energy

consumption, hence rarely adopted in practice even though the

performance can be excellent in noise-free environments [17, 63].

Fortunately, RF sensing offers just enough resolution to perform

HAR without infringing personal privacy, and it is far more energy-

efficient than sound, as RF signals are not generated by mechanical

vibration. Moreover, its performance is robust even under various

temperature or lighting conditions. Therefore, RF-HAR is deemed

as the most promising solution, where Wi-Fi is often adopted.
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Early RF-HAR exploited RSSI (Received Signal Strength Indi-

cator) to analyze human activities [48, 70], collected by COTS

(Commercial-Off-The-Shelf) Wi-Fi cards. However, RSSI can only

represent coarse information of Wi-Fi signals, rather than fine-

grained multipath effects generated by human activities. Therefore,

many efforts have been recently devoted to extracting comprehen-

sive information in Wi-Fi CSI (Channel State Information) from

Intel 5300 [15] Wi-Fi cards [10, 26, 59, 62]. As illustrated in Fig-

ure 1, body movements of different activities bring variations to

CSI, so features generated from CSI could be leveraged for HAR.

WhereasWi-Fi sensing exploits devices originally designed for wire-

less communication purposes (hence inherently limited in sensing

performance), dedicated RF sensing techniques are gaining momen-

tum very recently. These techniques are typically supported by two

types of radios, namely FMCW (Frequency-Modulated Continuous

Wave) radio [2, 73] and impulse radio [30, 44, 74].

Although RF sensing, in general, has achieved great performance

in HAR, it does have two major weaknesses. On one hand, similar

to other device-free sensing techniques [36, 41, 63], RF sensing

requires high volume of training data to re-train its model if the

sensing environment is altered (e.g., changing the radio locations

and/or the room furniture layout). This weakness is inherent to

device-free sensing as, unlike device-based sensing, it senses both

the subject and the background. On the other hand, as illustrated

in Figure 1, human cannot intuitively recognize different activities

from RF sensing data (as opposed to images). Consequently, human

interpretation cannot be exploited for conducting off-line labeling,

which is essential for image and text data collections. As a result,

RF sensing has to endure a much more laborious process (compared

with computer vision and natural language processing) to gather

labeled data sufficiently, in order for RF-HAR approaches to be able

to adapt to new environments with satisfactory performance.

Fortunately, recent developments on meta-learning [12, 47, 56]

have offered us a chance to enhance the environment adaptivity

of RF sensing. Roughly categorized into three types: model-based,

optimization-based, and metric-based, meta-learning aims to adapt
to new tasks rapidly with few labeled observations. Whereas model-

based approaches [42, 47] incur a high computational complexity,

the other two may potentially help RF-HAR. Optimization-based

approaches [12, 25, 46] adjust the training algorithm to find good ini-

tialization weights or learning rate, but their generalization ability

is questionable and the incurred overhead can still be high [46, 51].

Metric-based approaches [31, 50, 56] classify an unlabeled observa-

tion by its similarity to the labeled data. As they focus on learning

an optimal similarity metric (instead of directly tuning the learning

architecture), they likely incur the lowest complexity.

Leveraging the power of meta learning, we propose RF-Net for

one-shot RF-HAR. In other words, RF-Net performs HAR accurately

in a new environment with only one observation for each label.

Specifically, we first carefully examine representative RF sensing

techniques along with major meta-learning approaches. The results

motivate us to innovate in two aspects: i) a dual-path base network

for classifying activities, and ii) a metric-based meta-learning frame-

work to improve the fast adaption capability of the base network,

as illutrated in Figure 2. For the base HAR network, we combine

spatial module along with attention-based temporal module, aiming

to learn influential spatial-temporal features from both time and

Figure 2: RF-Net overview.

frequency domains. Our meta-learning framework contains a para-

metric RF-specific module designed to train a powerful distance

metric, instead of simply relying on traditional non-parametric

metrics (e.g., Euclidean or Cosine distances). This helps to achieve

a better generalization when applying this metric to conduct clas-

sifications in new environments. Essentially, we employ the base

network to perform both activity recognition and feature extraction,

and exploit them to (meta)-train the distance metric via a residual

classification module. In summary, our major contributions are:

• We propose RF-Net, a unified meta-learning framework for

RF-enabled one-shot HAR, delivering the capability of being

adaptive to new environments with very few labeled data.

• We innovatively design a dual-path activity recognition

(base) network, aiming to learn influential features from

general RF signals for enhancing HAR accuracy.

• We equip our meta-learning framework with a novel RF-

specific module designed to train a powerful distance metric,

so as to achieve a better generalization.

• We conduct extensive experiments on multiple RF sensing

techniques and in many indoor environments. We demon-

strate the superior performance of our proposed RF-Net

compared against multiple baselines.

This paper is organized as follows. Background and related works

are first examined in Section 2. Then our RF-Net is presented in

Section 3. Extensive experiment results are reported in Section 4,

and our paper is concluded in Section 5.

2 BACKGROUND AND LITERATURE
We carefully study representative RF sensing techniques along with

major meta-learning approaches in this section, aiming to better

motivate our design. The rationale behind this study is that, as

RF sensing induces far more complicated input data than those

under wearable sensing (where only up to three time series from

the three axes of an IMU sensors present [28]), deep understanding

and innovative treatments are hence needed.

2.1 Modeling RF Sensing
Generally, all RF sensing approaches explore RF channel state in-
formation (CSI) to differentiate human activities. Therefore, we

model the RF channel first, then examine three typical RF signals.

According to [54], considering a pair of transmitter and receiver
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(a) RF signal matrix. (b) Wi-Fi matrix. (c) FMCWmatrix. (d) IR matrix.

Figure 3: The RF signal matrix and corresponding heatmaps for three RF techniques in terms of the “walking” activity.

in an indoor environment with 𝑃 propagation paths, we have the

following baseband RF channel model given a carrier frequency 𝑓c:

ℎ(𝑡) = ∑𝑃
𝑝=1𝛼𝑝𝑒

𝑗2𝜋 𝑓c𝜏𝑝 + 𝑛(𝑡), (1)

where 𝛼𝑝 is the amplitude of 𝑝-th path, and 𝑛(𝑡) is Gaussian noise.

Moreover, 𝜏𝑝 = 𝜏𝑆𝑝 + 𝜏𝐷𝑝 where 𝜏𝑆𝑝 and 𝜏𝐷𝑝 are the 𝑝-th time delays

caused by static reflections and motion reflections, respectively.

For a transmitted signal 𝑠 (𝑡), the received signal becomes 𝑦 (𝑡) =
(ℎ ∗ 𝑠) (𝑡), where ∗ denotes convolution. In the following, we stick

to only one path (thus removing the subscript 𝑝), and we omit noise

term for brevity.

Wi-Fi Radio. Wi-Fi communications utilize Orthogonal Frequency

Division Multiplexing (OFDM) to encoding digital data on multi-

ple subcarriers. Let 𝐿 denote the number of OFDM subcarriers, 𝑠ℓ

denotes the ℓ-th subcarrier, then the received signal 𝑦𝑊
ℓ

can be

represented as follows:

𝑦Wℓ = 𝛼ℓ𝑒
𝑗2𝜋 𝑓ℓ𝜏𝑠ℓ , ℓ ∈ {1, ..., 𝐿}, (2)

where 𝛼ℓ and 𝑓ℓ are the amplitude and frequency of the ℓ-th subcar-

rier, respectively. Here the time variable 𝑡 disappears because the

bandwidth of Wi-Fi is so narrow that it is approximately deemed

as time invariant. The channel state can then be estimated as
ˆℎℓ =

𝑦W
ℓ
/𝑠ℓ , whose phase ∠ ˆℎℓ contains temporal feature 𝜏 . Given a total

𝐾 received packets, each of them offers a CSI vector [ ˆℎℓ ]ℓ∈{1, · · · ,𝐿} .
Combining all these data, we obtain the ensemble input sample as

a 𝐾 × 𝐿 signal matrix. Here we term the row index as slow-time
and the column index as fast-time, as they represent sampling at

different temporal scales. Figure 3a illustrates this signal model,

while Figure 3b provides an example for a Wi-Fi matrix.

FMCW Radio. FMCW is a special type of radar implementation.

Different from normal radios, FMCW radio transmits analog signals

modulated in a continuously increasing frequency across a wide

bandwidth. Consequently, it sweeps across time with a fine-grained

(frequency) resolution, equivalently convertible to a fine-grained

range resolution. For FMCW radio, we denote the bandwidth by

𝐵 and sweeping time span by 𝑇 S
. According to [39], the received

FMCW signal 𝑦F (𝑡) is:

𝑦F (𝑡) = 𝛼Π(𝑡 − 𝜏)𝑒−𝑗2𝜋 (𝛽𝜏𝑡+𝑓c𝜏−0.5𝛽𝜏
2) , (3)

where 𝛽 = 𝐵/𝑇 S
and Π(𝑡) is a rectangle function ranged from

−𝑇 S/2 to 𝑇 S/2. We term a signal represented by Eq (3) a frame; it
uses a frequency 𝛽𝜏 and a phase 𝑓c𝜏 − 𝛽𝜏2/2 to represent how the

signal changes over time. Therefore, we perform an 𝐿-point FFT

on each frame and get a set of 𝐿 frequency components, which

correspond to fast-time samples. Then we combine all 𝐾 frames

together to construct a 𝐾 ×𝐿 signal matrix (similar to that of Wi-Fi),

as shown in Figure 3c.

Impulse Radio. Whereas FMCW radio uses a varying frequency

to sweep time, impulse radio (IR) transmits a pulse signal with

an extremely short time duration. This enables IR signals to also

occupy a wide bandwidth 𝐵, again leading to a fine-grained time

resolution. The received pulse signal 𝑦I (𝑡) is:

𝑦I (𝑡) = 𝛼𝑒 𝑗2𝜋 𝑓c𝜏𝑒−0.5(𝑡−0.5𝑇tx−𝜏)
2𝜖−2

tx , (4)

where𝑇tx = 1

𝐵
is the signal duration, and 𝜖tx = 1

2𝜋𝐵−10 dB (log10 (𝑒))1/2
is the standard deviation determining the -10 dB bandwidth. Similar

to FMCW, if we consider 𝐿 samples of a pulse as a frame, combining

𝐾 such frames again gives us a 𝐾 × 𝐿 signal matrix, where the

fast-time directly corresponds to the temporal sample indices of a

frame, as shown in Figure 3d.

Remark: If we deem this matrix as an image (common input to

deep learning models such as CNN [32, 33]), we may stack multiple

such matrices derived from different tx-rx pairs together, so that

each tx-rx pair corresponds to an input channel. Although these

three RF sensing techniques share a similar model, they offer very

different time (thus range) resolutions: the 20MHz bandwidth of

Wi-Fi can only translate to a range resolution about 15m, but both

FMCW and impluse radios, with more than 1GHz bandwidth, can

achieve a centimeter-level resolution instead.

2.2 RF Meets Learning: Status and Challenges
Existing RF-sensing solutions mostly leverage machine learning

techniques to extract features and classify activities [3, 10, 38, 55,

57, 59, 72, 73]. Although their adopted RF signals and designed algo-

rithms vary, their input data can all be unified under the RF signal

matrix introduced in Section 2.1 as subcategories. For example, the

proposals in [1, 3, 10, 55, 57, 59] extract Doppler shift only along

the slow time axis in Figure 3b, in order to capture the velocities

of moving parts of a target and in turn to perform classifications.

Other proposals [72, 73] utilize multiple tx-rx pairs to extract range

information embedded along the fast time dimension in Figure 3c,

so as to predict human poses. Essentially, existing solutions only

retrieve partial information provided by RF signals; this motivates

us to consider a full exploitation of spatial, temporal, frequency

features offered by the signal matrix, so as to handle all three RF

sensing techniques using a unified learning framework.
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(a) Wi-Fi CSI in environment 1. (b) Wi-Fi CSI in environment 2.

(c) Feature map of environment 1. (d) Feature map of environment 2.

Figure 4: Environment influence: the same activity “walk-
ing” leads to distinct signal matrices and extracted features.

However, exploiting more features is a double-edged sword: it

improves activity classification under noise-free circumstances, but

it also makes RF sensing more sensitive to environment changes in

practice. Figure 4 demonstrates the influence of this sensitivity. As

explained in Section 1, re-training a learning model to suit a new

environment can be extremely expensive, as RF signal matrices,

totally different from images and texts, are not human understand-

able, enforcing a laborious on-line labelling. One solution is to

employ environment-invariant features/models, hoping to retain

classification accuracy without re-training in a new environment.

Previous works [57, 75, 76] utilize handcrafted features for this

purpose. However, these features depend on prior information such

as the position and orientation of a target, likely incurring another

laborious process in obtaining these information. Another solution

is transfer learning [26, 69]. The basic idea is to learn “transferable”

knowledge applicable across a pair of source and target environ-

ments. However, when applied to a new target environment, the

whole fine-tuning process has to be performed again with a substan-

tial amount of labeled data. In order to better tackle this challenge,

we need to consider recently emerged alternatives.

2.3 Meta-Learning Basics
Human level intelligence requires that learning models can mimic

human behavior to learn from known tasks (environments in our

context) and adapt to new tasks quickly with only a few labeled

observations. Recently, meta-learning [12, 47, 56] has emerged to

achieve the aforementioned intelligence. The key idea of meta-

learning is twofold: i) learning knowledge from source environ-

ments with rather abundant data, and ii) exploiting accumulated

knowledge to learn similarities and differences in all target en-

vironments, requiring only a minimum level of labeled data. In

meta-learning, we denote the dataset for the ℓ-th environment by

Dℓ . Each Dℓ is split into a support set DS

ℓ
for learning and a query

set DQ

ℓ
for training and testing. We drop the subscript ℓ in the

following discussions as the learning procedure is identical in all

source datasets. Generally, a base network 𝑓Φ predicts the probabil-

ity 𝑃Θ (𝑦 |x,DS) of class 𝑦 in source environments, given a support

set DS
and an input x in DS

, where Θ is the meta-parameter that
parameterizes the conditional probability.

Φ∗ = argmax

Φ
EDS


∑

(x,𝑦) ∈DS

𝑃Θ (𝑦 |x,DS)
 . (5)

Then the optimal meta-prameter Θ∗ is obtained by maximizing the

expectation over all query sets in the source environments as:

Θ∗ = argmax

Θ
EDQ

[
𝑃 (Φ|DQ)

]
. (6)

Upon a new target environment with dataset
ˆD (containing

ˆDS
as

the support set with a minimum level of labeled data, and the rest

unlabeled for final testing), Θ∗ is transferred to this environment

and the base network 𝑓Φ is refined according to
ˆDS

. The two major

meta-learning approaches applicable in sensing context differ in

how 𝑃Θ (𝑦 |x,DS) is modelled.

2.3.1 Optimization-Based. This line of research focuses on the

optimization-based training algorithms, aiming to cope with few

observations or to converge within few optimization steps. Essen-

tially, training algorithms are adjusted to find good initialization

weights as Θ, so that 𝑓Φ could be generalized to new tasks. These

approaches model 𝑃Θ (𝑦 |x,DS) as 𝑃𝑔Θ𝑔 (DS )
(𝑦 |𝑥), where

𝑔Θ𝑔 (DS) = 𝑔Θ𝑔

(
Θ0, {∇Θ0

L(x𝑖 , 𝑦𝑖 )} (x𝑖 ,𝑦𝑖 ) ∈DS

)
, (7)

is the meta learner that generates initialization weights with the

gradient of loss {∇Θ0
L(x𝑖 , 𝑦𝑖 )} (x𝑖 ,𝑦𝑖 ) ∈DS and starting weights Θ0

as input. Model-Agnostic Meta-Learning (MAML) [12] claims to be

applicable to any network learnt via gradient descent, whereas later

proposals (e.g., Reptile [43], Meta-SGD [34], TAML [25]) all intend

to improve learning efficiency along various directions. However,

as stated in [46, 51], the generalization ability of these approaches

is questionable. To be specific, when they are applied to a base net-

work 𝑓Φ with a high-dimensional parameter space, tuning initializa-

tion weights Θ directly via 𝑔Θ𝑔
(𝐷S) could result in generalization

difficulty given very few observations. Recently, MetaSense [14]

adopts MAML to construct an adaptive wearable sensing system.

Compared with RF sensing data, the dimension of wearable sens-

ing data obtained by IMUs is much lower. Therefore, they adopt

shallow neural network as 𝑓Φ to avoid the generalization challenge

described above. RF sensing (given the data model described in

Section 2.1) certainly demands a powerful base network 𝑓Φ (with a

high-dimensional parameter space for Θ), rendering optimization-

based meta-learning approaches largely inapplicable.

2.3.2 Metric-Based. This category of non-parametric approaches

intend to classify a new observation x by a weighted sum of the

labels in DS
as follows:

𝑃Θ (𝑦 |x,DS) =
∑

(x𝑖 ,𝑦𝑖 ) ∈DS

𝑘Θ (𝑓Φ (x), 𝑓Φ (x𝑖 ))𝑦𝑖 , (8)

where 𝑘Θ is an optimal metric function for measuring the similar-

ity between x and x𝑖 . Essentially, they aim to learn an embedding

function 𝑓Φ that transforms inputs into a representation suitable

for classification via the similarity comparison. Although several

proposals have been made under this category (e.g., Siamese net-

works [31], Matching networks [56], Prototypical networks [50]),
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they mostly differ in the choice of the (input) embedding vectors

and non-parametric distance metric (e.g., Cosine similarity). Com-

pared with optimization-based approaches, the meta-training phase

of metric-based approaches is rather straightforward: it mainly

focuses on learning a powerful distance metric to achieve gener-

alization rather than directly tuning 𝑓Φ. This property has made

metric-basedmeta-learning approaches less constrained by the com-

plexity of 𝑓Φ, and it has also motivated us to adopt metric-based

approaches for achieving one-shot RF-HAR in this paper.

3 RF-NET: ONE-SHOT HAR
Based on our discussions in Section 2, we hereby present RF-Net

comprising two novel designs: i) a meta-learning framework that

involves a parametric RF-specific module for training a powerful

distance metric, and ii) a dual-path base network that fully exploits

the high-dimensional features contained in the signal matrix (thus

applicable to all three RF sensing datasets). We first describe the

problem formulation. Then we elaborate our meta-learning frame-

work and dual-path base HAR network.

3.1 Problem Formulation
In this paper, the ultimate goal of RF-Net 𝑞Ω , parameterized by

Ω, is to perform one-shot RF-HAR, i.e., adapting to every new

environment rapidly with a single labeled observation per class.

To achieve it, we need a base HAR network 𝑓Φ, parameterized by

Φ, to extract features from input observations (i.e., RF signal ma-

trix). As introduced in Section 2.1, we deem an RF signal matrix

x ∈ R𝐾×𝐿×𝑁r
as an image, where 𝐾 is slow time dimension, 𝐿 is

fast time dimension, and 𝑁r is the number of tx-rx pairs. This base

network 𝑓Φ is then wrapped into a meta-learning framework to be

generalized to new environments. In order to maintain the general-

ization capability of 𝑓Φ given its high-dimensional parameter space,

we adopt a metric-based meta-learning framework 𝑔Θ parameter-

ized by Θ. Therefore, RF-Net 𝑞Ω includes the base network 𝑓Φ and

meta-learning framework 𝑔Θ, hence Ω = Φ ∪ Θ.
The procedure for learning 𝑞Ω is planned as follows. We first

train RF-Net with 𝑁e source environment training datasets D =

{Dℓ }𝑁e

ℓ=1
. For each epoch, we train 𝑞Ω on environment datasets,

learning from environment to environment to mimic how RF-Net

would be tested when presenting in a new environment. More

specifically, for each environment dataset Dℓ , we sample support

observations as support setDS

ℓ
= {xS

ℓ, 𝑗
, 𝑦S
ℓ, 𝑗
}𝑁c

𝑗=1
, xS
ℓ, 𝑗
∈ R𝑁s×𝐾×𝐿×𝑁r

and query observations as query setDQ

ℓ
= {xQ

ℓ
, 𝑦

Q

ℓ
}, xQ

ℓ
∈ R1×𝐾×𝐿×𝑁r

,

where 𝑁s denotes the number of observations (i.e., 𝑁s = 1 for one-
shot learning), 𝑁c is the number of activity categories, and 𝑦ℓ de-

notes activity label. Note that the support set DS

ℓ
and query set

DQ

ℓ
belong to the same environment space but observations are

disjoint, i.e.,DS

ℓ
∩DQ

ℓ
= ∅. We drop the subscript ℓ as the learning

procedure is identical in all environments. Essentially, the objective

function of RF-Net 𝑞Ω can be formulated as follows:

Ω∗ = argmax

Ω
ED


∑
DQ

∑
DS

𝑔Θ

(
𝑓Φ

(
xQ

)
, 𝑓Φ

(
xS

)
, 𝑦S

) . (9)

3.2 Meta Framework
We intend to design a trainable metric-based meta-learning frame-

work specifically for RF signal matrices. As illustrated in Figure 5a,

our proposed meta framework 𝑔Θ consists of two modules:

• RF Metric Module 𝑔metric: it aims to train a powerful dis-

tance metric for measuring observations similarities via a

linear mapping layer. Meanwhile, it takes into consideration

the multiple features generated by the dual-path base net-

work 𝑓Φ. Consequently, this module could provide a holistic

interpretation of x toward better generalization.

• Residual Classification Module 𝑔𝑐 : it intends to incorporate

the capability of 𝑓Φ further as a recognition network, in addi-

tion to its feature extractor role in𝑔metric. This module allows

the base network to assist in (meta)-training the distance

metric 𝑔metric.

3.2.1 RF Metric Module. RF metric module first employs our dual-

path baseHARnetwork (see Section 3.3) as a (deep) feature extractor

𝑓Φ : R𝐷x → R𝐷z
, mapping an RF signal matrix x to a feature repre-

sentation z, where 𝐷x and 𝐷z are the dimensionalities of RF signal

matrix and the corresponding embedding, respectively. Different

from previous works such as [10, 26, 56], we expect that the metric

space of multiple features is able to capture a more complex rep-

resentation than simply relying on single feature representation.

Therefore, considering the RF signal matrix described in both time

and frequency domains, we leverage 𝑀 features to represent the

RF signal matrix x as follows:

{𝐻 feat

𝑚 = 𝑓Φ (x)}𝑀𝑚=1 .

In our problem setting, 𝐻 feat

𝑚 includes 𝐻 time
and 𝐻 freq

respectively

extracted from time and frequency domains, as well as 𝐻 fuse
com-

bining features from both domains to derive spatial and temporal

information. We refer to Section 3.3 for further elaborations on

these features. Given these features, we employ cosine distance

𝑑 (𝑎, 𝑏) = − 𝑎 · 𝑏
∥𝑎∥∥𝑏∥ to obtain a distance set {𝜆𝑚}𝑀𝑚=1

between fea-

tures generated by support observations and query observations as

follows:

{𝜆𝑚}𝑀𝑚=1 =

{
𝑑

(
𝐻
feat,S
𝑚 , 𝐻

feat,Q
𝑚

)}𝑀
𝑚=1

.

In order to further increase the RFmetric space, we design RFmetric

module to be trainable instead of solely relying on cosine distance.

We stack these 𝑀 distances [𝜆1, 𝜆2, ..., 𝜆𝑀 ] into a vector form Λ.
Given a query observation, we propose to combine each distance

measure 𝜆𝑚 in Λ via learnable linear mapping weights 𝜼. Therefore,
we could compute the activity probabilities of query observations

by weighting the labels of support observations 𝑦S as follows:

𝑝𝜷 (𝑦 = 𝑗 |𝒙) = softmax(−Λ 𝑗𝜷), 𝜷 = 𝜼𝑦S, (10)

where 𝜼 ∈ R𝑀×𝑁c
and Λ 𝑗 ∈ R1×𝑀 . To further realize the role of

𝜷 , we analyze that for 𝑗-th class, the class-wise cross-entropy loss

function is given by

𝐿𝑗 (𝜷) =
∑

𝒙∈DQ

[
Λ 𝑗𝜷 + log

(
𝑁c∑
𝑛=1

𝑒−Λ𝑛𝜷

)]
. (11)
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(a) RF-Net 𝒒
𝛀
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(b) Dual-path base network 𝒇𝚽.

Figure 5: Overall design of RF-Net 𝒒
𝛀
and its dual-path base network 𝒇

𝚽
.

For each sample of query set 𝒙 ∈ DQ
, the second-order partial

derivative of Eq (11) with respect to 𝜷 is

∇2𝐿𝑗 (𝜷) =
1

1𝑇𝛾
diag(𝛾) − 1

(1𝑇𝛾)2
𝛾𝛾𝑇 , (12)

where 𝛾 = [𝛾1, · · · , 𝛾𝑁𝑐
] and 𝛾𝑘 = 𝑒−Λ𝑘𝜷

. If ▽2𝐿𝑗 (𝜷) ≥ 0, 𝐿𝑗 (𝜷) in
Eq (11) is convex. Therefore, we need to verify that 𝑣𝑇▽2𝐿𝑗 (𝜷)𝑣 ≥ 0

for all 𝑣 , but we have:

𝑣𝑇∇2𝐿𝑗 (𝜷)𝑣 =
(∑𝑁c

𝑛=1
𝛾𝑛𝑣

2

𝑛) (
∑𝑁c

𝑛=1
𝛾𝑛) − (

∑𝑁c

𝑛=1
𝑣𝑛𝛾𝑛)2

(∑𝑁c

𝑛=1
𝛾𝑛)2

,

which is indeed non-negative due to Cauchy-Schwarz inequality,

i.e., (∑𝑁c

𝑛=1
𝑣𝑛𝛾𝑛)2 ≤ (

∑𝑁c

𝑛=1
𝛾𝑛𝑣

2

𝑛) (
∑𝑁c

𝑛=1
𝛾𝑛). Now we have proven

the convexity of 𝐿𝑗 (𝜷), which in turn indicates that our RF metric

module can quickly learn the optimal parameters 𝜷 for combining

multiple representations together.

3.2.2 Residual ClassificationModule. In this module, different from

traditional metric-based meta-learning framework, we aim to em-

ploy the base network 𝑓Φ for recognition too, rather than solely

as a feature extractor explained in Section 3.2.1. To be specific, we

first compute 𝑦meta,Q
, i.e., classify query observations by weight-

ing the labels of support observation 𝑦S, as described in Eq (10).

Meanwhile, we exploit 𝑓Φ as recognition network to compute log-

its directly 𝑦Q = 𝑓Φ (xQ). Afterwards, we incorporate 𝑦Q into

𝑦meta,Q
via a residual connection, so that the final predicted logits

of RF-Net 𝑦Q is computed as 𝑔𝑐 (𝑔metric (𝑓Φ (xS), 𝑓Φ (xQ)), 𝑦S, 𝑦Q) =
𝑔metric (𝑓Φ (xS), 𝑓Φ (xQ))𝑦S + 𝑦Q. It enables the base network to re-

inforce the meta-training of the distance metric 𝑔metric.

3.2.3 Training Strategy. We carefully devise our training strategy

for learning RF-Net. As described in Algorithm 1, given RF-Net

𝑞Ω including the base network 𝑓Φ and meta-learning framework 𝑔Θ,

we exploit training datasetD and testing dataset
ˆD in training and

testing stages, respectively. In training stage (line 2-11), we train 𝑓Φ
and 𝑔Θ in the leader-follower asymmetric manner between inner-

and meta-training to enhance the overall capability on performing

one-shot RF-HAR with 𝑞Ω . More specifically, we first inner train 𝑓Φ
withDS

(line 7). We minimize the inner training lossL(𝑓Φ (xS), 𝑦S)

Algorithm 1 RF-Net training.

Require: Training datasetD, Testing dataset
ˆD, Base network 𝑓Φ,

RF-Net 𝑞Ω , Meta-learning framework 𝑔Θ, hyperparameters 𝛼

and 𝛽 , as well as the maximum number of iterations iter

1: % Training
2: while iter ! = 0 do
3: Sample environment minibatch {Dℓ } ∼ D
4: for Dℓ ∈ {Dℓ } do
5: Sample support and query observations DS

ℓ
,DQ

ℓ
∼ Dℓ

6: DS

ℓ
= {xS

ℓ, 𝑗
, 𝑦S
ℓ, 𝑗
}𝑁c

𝑗=1
, DQ

ℓ
= {xQ

ℓ
, 𝑦

Q

ℓ
}, DQ

ℓ
∩ DS

ℓ
= ∅

7: Evaluate ∇ΩLℓ (𝑓Φ (xSℓ ), 𝑦
S

ℓ
), Ω ← Ω − 𝛼∇ΩLℓ

8: Evaluate ∇ΘLℓ (𝑞Ω (xSℓ , x
Q

ℓ
, 𝑦S
ℓ
), 𝑦Q

ℓ
), Θ← Θ − 𝛽∇ΘLℓ

9: end for
10: iter← iter − 1
11: end while
12: % Testing
13: for ˆDℓ ∈ ˆD do
14: Sample support and query observations

ˆDS

ℓ
, ˆDQ

ℓ
∼ ˆDℓ

15:
ˆDS

ℓ
= {xS

ℓ, 𝑗
, 𝑦S
ℓ, 𝑗
}𝑁𝑐

𝑗=1
,
ˆDℓ
Q

= {xQ
ℓ
, 𝑦

Q

ℓ
}, ˆDQ

ℓ
∩ ˆDS

ℓ
= ∅

16: Evaluate ∇ΘLℓ (𝑓Φ (xSℓ ), 𝑦
S

ℓ
), Θ← Θ − 𝛼∇ΘLℓ

17: Predict 𝑦Q = 𝑞Ω (xSℓ , x
Q

ℓ
, yS
ℓ
)

18: end for
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by conducting gradient descent with respect to both base network

parameters Φ and meta parameters Θ. This helps finding a coarse
initialization points for learning meta parameters Θ, boosting the
convergence speed of RF-Net 𝑞Ω . Afterwards (line 8), we meta-train

𝑔Θ conditioned on learned 𝑓Φ using both support and query obser-

vations, so that it produces 𝑞Ω that performs well on recognizing

query observations.

Now we have achieved a well-trained RF-HAR 𝑞Ω by sequen-

tially training 𝑓Φ and 𝑔Θ. Given a testing dataset
ˆD, we could eval-

uate the performance of RF-Net on performing one-shot RF-HAR.

We first intend to refine 𝑞Ω with labeled support observations

ˆDS = {xS
𝑗
, 𝑦S
𝑗
}𝑁𝑐

𝑗=1
. To be specific, we adapt the well-trained 𝑞Ω

using the same inner training procedure, except that we only fine-

tune meta-learning framework parameter Θ (lines 16). Finally, we

classify query observations with refined 𝑞Ω and labeled support

observations as 𝑦Q = 𝑞Ω (xS, xQ, yS).

3.3 Dual-Path Base Network
As illustrated in Figure 5b, our base HAR network 𝑓Φ is composed

of three main modules to learn RF feature representations:

• Spatial Module 𝑓s: it extracts sensitive spatial features from

RF matrices x in both time and frequency domains.

• Attention-based Temporal Module 𝑓t: it aims to capture long-

term temporal features from RF matrices in both time and

frequency domains. And it also intends to generate joint

temporal representations across two domains.

• Classification Module 𝑓c: this final module predicts activity

label, given trained features from 𝑓s and 𝑓t.

For both 𝑓s and 𝑓t, we first compute xf ∈ R𝐾×𝐿×𝑁r
via FFT along

the slow time of an RF matrix x ∈ R𝐾×𝐿×𝑁r
. Then both x (time

domain) and xf (frequency domain) are used as input.

3.3.1 Spatial Module. This module leverages 𝑓s to learn the spatial

features𝐻 spat
. Essentially, it extracts sensitive spatial features from

RF matrices in both time domain x and frequency domain xf . We

employ state-of-the-art deep learning model CNNs as the backbone

𝑓
b
, and we empirically select the most cost-effective backbone in

Section 4.3.1. Generally, CNNs are designed for exploring spatial

features in image data. Therefore, we regard x and xf as image with

𝑁r tx-rx pair as input channels, 𝐿 fast time dimension as height

of input planes in pixels and 𝐾 slow time dimension as width in

pixels. Moreover, we additionally employ one convolutional layer

FFT

Backbone Backbone

cat

(a) Spatial Separate Module

FFT

cat

Dense Layer 

Backbone

ReLU

(b) Spatial Fuse Module

Figure 6: Two alternative spatial modules.

FFT

LSTM
Attention

Dense

+ Dense

ReLU

ReLU ReLU Dense

Dense ReLU

LSTM

+

cat

Dense

Figure 7: Attention-based temporal module.

𝑓a to adjust channel dimension into designated dimension declared

by the backbone.

We explore two spatial modules, named spatial separate module

and spatial fuse module. As depicted in Figure 6a, spatial separate

module aims to employ backbone for generating spatial features

of x and xf separately: 𝐻 s,x = 𝑓
b
(𝑓a (x)) and 𝐻 s,xf = 𝑓

b
(𝑓a (xf ));

the final spatial features 𝐻 spat
are then produced by concatenating

𝐻 s,x
and 𝐻 s,xf . However, spatial separate module involves a high

computation complexity due to repeated backbone usage. There-

fore, we further explore spatial fuse module illustrated in Figure 6b.

As a simplification, we concatenate x and xf at the initial stage

xc = [x, xf ] ∈ R𝐾×𝐿×2𝑁r
. Afterwards, we intend to learn a com-

posite representation from xc. We first reshape xc ∈ R𝐾×2𝑁r𝐿
and

then we employ a Rectified Linear Unit (ReLU) activated dense layer
to generate a composite representation 𝐻 c ∈ R𝐾×𝛼×2, where 𝛼
denotes the hidden dimension. Afterwards, we employ backbone

𝑓
b
to directly extract 𝐻 spat = 𝑓

b
(𝑓a (𝐻 c)). The corresponding per-

formance comparisons between these two modules, along with the

choice of 𝛼 and activation function, are conducted in Section 4.

3.3.2 Attention-Based Temporal Module. In order to generate long-

term temporal features from RFmatrices in both time and frequency

domains, we utilize 𝑓t to learn attended time features 𝐻 time
and at-

tended frequency features 𝐻 freq
. As illustrated in Figure 7, we first

extract initial time features 𝐻 time⋄
and frequency features 𝐻 freq⋄

,

leveraging Long Short Term Memory (LSTM) to avoid gradient van-

ishing problems. Therefore, we reshape x ∈ R𝐾×(𝐿×𝑁r)
and xf ∈

R𝐾×(𝐿×𝑁r)
, regarding the slow time dimension as step index with

cardinality 𝐾 . Then, we extract 𝐻 time⋄ ∈ R𝐾×𝛼 and 𝐻 freq⋄ ∈ R𝐾×𝛼
by passing x and xf into LSTM separately. After that, we focus on

employing attention mechanism [29] to learn richer joint represen-

tations between initial feature representations, aiming to generate

the attention map A ∈ R𝐾×𝐾 containing the joint information of

every step between 𝐻 time⋄
and 𝐻 freq⋄

. To be specific, ReLU acti-

vated dense layers are first employed to map 𝐻 time⋄
, 𝐻 freq⋄

into

𝐻 time†
,𝐻 freq† ∈ R𝐾×𝜄 , where 𝜄 denotes hidden dimension. Then the

attention map is generated asA := softmax(𝑊 ◦𝐻 time† (𝐻 freq†)𝑇 ),
where ◦ stands for Hadamard product, 𝑇 denotes transpose, and

𝑊 ∈ R𝐾×𝜄 denotes weight matrix.
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Combing the attention map A with the initial features pro-

duces joint representations ((𝐻 time⋄)𝑇A)𝑇 and ((𝐻 freq⋄)𝑇A)𝑇 ,
and these joint representations are passed through ReLU activated

dense layers for adding non-linearity. Especially, we separately in-

corporate these mapped joint representations into 𝐻 time⋄
, 𝐻 freq⋄

via a residual connection to generate𝐻 time ∈ R𝐾×𝛼 ,𝐻 freq ∈ R𝐾×𝛼 ,
thus it is able to solve vanishing gradients issue and achieve optimal

identity mapping [18]. Subsequently, we choose final step (𝐾-th)

of attended time and frequency features, i.e., 𝐻 time

𝐾
and 𝐻

freq

𝐾
, for

producing a composed temporal features 𝐻 temp
. To be specific, we

first employ two ReLU activated dense layers to generate𝐻 time

𝐾
and

𝐻
freq

𝐾
. Then, we stack those mapped features followed by a dense

layer to compute 𝐻 temp ∈ R1×2𝛼 .

3.3.3 Classification Module. We have employed spatial module 𝑓s
and attention-based temporal module 𝑓t to generate sensitive spatial

features𝐻 spat
and attended temporal features𝐻 temp

from both time

and frequency domains. In order to efficiently predict an activity

label, we further derive an integrated feature by fusing both spatial

and temporal representations. In this paper, we directly add spatial

features𝐻 spat
and temporal features𝐻 temp

as𝐻 fuse = 𝐻 temp+𝐻 spat
.

To enable this integration, we set the hidden dimension 𝛼 properly

so as to equalize the dimensions of 𝐻 spat
and 𝐻 temp

. Finally, we

utilize a dense layer to predict activity label 𝑦 = 𝐻 fuse𝑊1, where

𝑊1 ∈ R2𝛼×𝑁𝑐
is weight matrix.

Remark: We choose the final step (𝐾-th) of the attended temporal

features 𝐻 time

𝐾
and 𝐻

freq

𝐾
, along with the fused features 𝐻 fuse

, as

{𝐻 feat

𝑚 }𝑀
𝑚=1

in RF-Net (see Section 3.2.1).

4 EXPERIMENTS
In this section, we conduct extensive experiments on all three RF

sensing techniques, i.e., Wi-Fi, FMCW, and impulse radio (IR), aim-

ing to demonstrate the efficacy of the dual-path base network for

activity recognition and to evaluate the overall performance of

RF-Net on performing one-shot RF-HAR. In particular, we report

experiments on the following aspects: i) hyperparameter searching

of network setting, ii) superiority of RF-Net and dual-path base

network over baselines, and iii) efficacy of RF-Net and dual-path

base network on various RF sensing datasets.

4.1 Datasets
As described in Section 2.1, RF signal in each sensing technique

could be formulated as matrix x ∈ R𝐾× 𝐿×𝑁𝑟
. In this section, we

first elaborate RF signal matrix of these RF sensing techniques.

Then we describe environment information and human activities

provided in each dataset. Given the variety of testing conditions,

the activities of testing subjects may vary across different datasets.

Details of each dataset is summarized in Table 1: for each RF sensing

technology, we specify the number of environments involved, the

number of observations per environment taken, and the number

of activities tested. To generate different environments, we first

select a few rooms with distinct sizes, also involve different test-

ing subjects. Within the same room, we change positions of the

furniture and appliances, as well as the location of the subject. In

order to artificially create “differences”, we make sure that at least

Table 1: Datasets information.

Sensing Environments # Observations # Activities #

Wi-Fi 80 25 6

Wi-Fi 100 20 6

Wi-Fi 120 16 6

FMCW 10 17 6

IR 50 16 6

five objects (including the subject) have their position changed in a

room when generating a new environment. Due to the popularity

of Wi-Fi sensing, we choose to employ three datasets for it, but

only one dataset for FMCW and IR.

4.1.1 Wi-Fi. We exploit CSI of 30 OFDM subcarriers with 2 tx-

rx pairs to record six human activities: wiping, walking, moving,

rotating, sitting, and standing up. CSI information is sampled at

100Hz and conducted window slicing size in 5.12s. Therefore, each

signal matrix is with a total 𝐾 = 512 received packets, 𝐿 = 30

subcarriers, and 𝑁𝑟 = 2 tx-rx pairs. We employ 11 subjects and

record from 6 different rooms. In the following experiments, we

intend to investigate the impact of the number of environments

as well. Therefore, we split these environments data into three

datasets including 80 environments, 100 environments, and 120

environments. As described in Table 1, these datasets have 25, 20,

and 16 observations per environment per activity, respectively.

4.1.2 FMCW. We utilize FMCW radar device with 1 tx-rx pair to

collect data. To be specific, we collect each framewith 253 frequency

components every 67ms. Then, we stack 100 frames for covering a

6.7s interval. Therefore, each FMCW matrix x ∈ R𝐾× 𝐿×𝑁𝑟
is with

a total 𝐾 = 100 frames, 𝐿 = 253 frequency components, and 𝑁𝑟 = 1

tx-rx pair. These matrices depict that 9 subjects in 2 different rooms

perform six activities: standing up, sitting down, going out, entering

room, putting on clothes, and putting off clothes. We aim to keep

consistency on the number of observations per environment per

activity of all datasets. Therefore, we split observations into 10

different environments.

4.1.3 IR. We employ IR device with 1 tx-rx pair to transmit pulse

signal. Specifically, we collect each framewith 138 time components

every 2.5ms and we stack 400 frames together. Accordingly, each

IR matrix x ∈ R𝐾× 𝐿×𝑁𝑟
is with total 𝐾 = 400 frames, 𝐿 = 138

samples of a pulse, and 𝑁𝑟 = 1 tx-rx pair. We employ 20 subjects

in 3 rooms to perform six activities : sitting down, standing up,

walking, falling, bending, and lying. We split all the observations

into 50 different environments.

4.2 Baselines & Implementation
We present several baseline schemes against which our RF-Net

and its base network will be compared. We also briefly explain the

implementation of our experiments.

4.2.1 Baselines For Dual-path Base Network. We compare our pro-

posed base network with the following baseline networks. We aim

to demonstrate the efficacy of our base network on extracting fea-

tures from RF signal matrix for HAR.
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• TIME: the proposed spatial module with only time domain

data. It is used to evaluate network with spatial features in

time domain.

• FREQ: the proposed spatial module with only frequency

domain data. It is used to investigate the performance of

network with spatial features in frequency domain.

• SPATIAL-SEP: the proposed spatial separate module. It is

used to investigate the performance of network with spatial

features in both time and frequency domain.

• SPATIAL-FUSE: the proposed spatial fuse module. It is used

to examine network with spatial features in both time and

frequency domain.

• DUAL-wo-ATT: the proposed dual-path base network with-

out attention mechanism. It is used to demonstrate the effi-

cacy of the attention mechanism.

• DUAL-PATH: the proposed dual-path base network.

Note that, as SPATIAL-SEP and SPATIAL-FUSE are two alterna-

tive components, DUAL-wo-ATT and DUAL-PATH will choose to

involve whichever performs better.

4.2.2 Baselines For RF-Net. We evaluate the performance of one-

shot human activity recognition when RF-Net is adapted to new

environments. Therefore, we mainly compare our network with

the following meta-learning baselines and fine-tuning baseline.

• Fine-Tuning (FT): FT firstly trains dual-path base network

with the training set. When FT adapts the network on the

test set, the parameters of classification module would be

fine-tuned with support observations on the test set.

• MAML: a state-of-the-art optimization-based meta-learning

baseline. This scheme has been adopted by Metasense [14]

to enable adaptive wearable sensing system. MAML relies

on meta-optimization through gradient descent in a model

agnostic way. It expects to learn an initial representation

that can be fine-tuned efficiently in a few steps.

• Prototypical Network (PN): a state-of-the-art metric-based

meta-learning baseline. Given few observations, PN gener-

ates prototypes (feature representations) for each class and

it uses the Euclidean distance metric to search the closest

prototype as predicted class.

• RF-Net*: our proposed meta-learning framework without

the RF metric module.

• RF-Net: our proposal. The comparison between RF-Net and

RF-Net* highlights the impact of RF metric module.

4.2.3 Implementation. We first apply data normalization to all

datasets. Afterwards, we sample 80% environments of each dataset

into training dataset D and the remaining into testing dataset
ˆD,

and we perform a 10-fold cross-validation for each experiment. We

report the average accuracy evaluated on the testing dataset under

1-, 2-, 3-shot scenarios, i.e., 𝑁𝑠 = {1, 2, 3}. We use regularization

technique batch normalization [23] to avoid overfitting. The fol-

lowing experiments are all programmed with PyTorch [45] and run

on NVIDIA TESLA V100 with 16GB memory.

4.3 Hyperparameter Searching
We first conduct hyperparameter searching of dual-path base net-

work, and thus we could employ the final hyperparameters in the

following experiments for the fairness comparison. To be specific,

we explore the following aspects: selection of CNN backbone, hid-

den dimension size, as well as activation function selection. In this

section, we explore the aspects on the dual-path base network on

the Wi-Fi dataset with 100 environments.

4.3.1 Backbone Selection. Since our base network leverages CNN

backbone 𝑓𝑏 for extracting spatial features, the selection of CNN-

backbone is essential for building a good base network. Therefore,

we evaluate multiple state-of-the-art CNN backbones with various

model complexity implanted into our base network. As depicts

in Figure 8, these include two shallow networks: 5 layers CNN

(cnn5) (with 3 convolutional layers and 2 fully connected layers)

and 8 layers AlexNet (alexnet8) [32], two medium deep networks:

18 layers ResNet (resnet18) [18] and 19 layers VGG (vgg19) [49], as

well as two deep networks: 44 layers ShuffleNet (shufflenet44) [71]

and 152 layers ResNet (resnet152) [18]. We observe that our choice
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Figure 8: CNN backbone selection.
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resnet18 achieves the best overall accuracy compared with other

backbones, particularly for one-shot HAR. We further study the

model overhead (complexity, inference time, and memory usage) of

resnet. As the complexity of resnet18 takes up around 85% of the

whole system, its overhead can be roughly regarded as the system

overhead. According to a recent benchmark [5], resnet18, with a

low model complexity and memory usage, achieves a low inference

time, leading to an excellent real-time performance. Moreover, com-

pared with other light-weight model such as shufflenet44, resnet18

achieves a comparable performance when it is deployed to com-

mercial edge devices. Therefore, we select pre-trained ResNet 18

layers network as the CNN backbone for RF-Net.

4.3.2 Hidden Dimension Size & Activation Function Selection. As
described in Section 3.3, we use a hidden variable 𝛼 to compose our

network. Therefore, we aim to search a good dimension size. We

separately explore three settings 𝛼 = 128, 𝛼 = 256, and 𝛼 = 512,

and report the accuracy in Figure 9. Although 𝛼 = 128 is compared

well with 𝛼 = 512 in average, 𝛼 = 512 outperforms 𝛼 = 128 on

one-shot HAR. In this paper, one-shot HAR takes precedence, and

thus we set 𝛼 to 512. Afterwards, we also search the best activation

function in our network. We explore ReLU, Leaky ReLU, Sigmoid,

and Tanh. Figure 10 plots the performance. We observe that ReLU

outperforms other function and we set all the activation function to

ReLU. Therefore, we will employ pre-trained ResNet with 18 layers

as our CNN backbone, set hidden dimension to 512 and select ReLU

as activation function in the following experiments.

4.4 Superiority of Proposed Network
In this section, we will investigate the superiority of dual-path base

network and RF-Net over baselines on various RF sensing datasets.

Specifically, we set following parameters:𝑀 ′ to 12, batch size to 3,

learning rate to 0.001, the number of epochs to 20 and we employ

Adam optimizer to train networks.

4.4.1 Superiority of Dual-path base Network over Baselines. Fig-
ure 11, Figure 12, and Figure 13 separately report the accuracy of

dual-path base network and the baselines on Wi-Fi, FMCW, and

IR datasets. In all the cases, our base network outperforms all the

baselines. It shows the effectiveness of both spatial and temporal

features extracted by the dual-path base network for the purpose

of HAR. To be specific, the performance of SPATIAL-FUSE out-

performs TIME and FREQ remarkably. It validates our motivation

that the utilization of RF signal matrix in dual-path (both time and

frequency domain) is beneficial for HAR. In our experiments, we

find that SPATIAL-FUSE is far better than SPATIAL-SEP when ac-

curacy and time complexity are taken into account. One possible

reason is that using the CNN backbone twice doubles the number

of parameters in the network, and makes SPATIAL-SEP relatively

harder to train and converge.

In most cases, we observe that the performance of DUAL-wo-

ATT is still unacceptable in spite of already involving temporal

features. By contrast, the outstanding performance of dual-path

base network demonstrates the efficacy of attended temporal fea-

tures. We further plot attention map A of two different activities

on FMCW datasets in Figure 14. This showcases that the attention

mechanism used in the temporal module is able to discover a rich
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Figure 11: Overall comparison results for dual-path base net-
work evaluation on Wi-Fi dataset.
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Figure 12: Overall comparison results for dual-path base net-
work evaluation on FMCW dataset.
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Figure 13: Overall comparison results for dual-path base net-
work evaluation on IR dataset.
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Figure 14: FMCWattentionmapA of twodifferent activities:
walking and sitting down.

joint temporal representations across two domains, thus improving

the performance of HAR. In general, the accuracy of our dual-path

base network outperforms DUAL-wo-ATT by around 4.2%.
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Figure 15: Overall comparison results for dual-path base net-
work evaluation on Wi-Fi, FMCW, IR datasets in terms of
general classification.

Remark: One may intuitively expect a monotonic increase in ac-

curacy given more shots. However, as the base network is designed

for RF-HAR in better exploiting the input of high-dimensional RF

signal matrices, its performance is optimized for general classifi-

cation to fit into the overall meta learning framework. Therefore,

the fluctuation in accuracy across a few shots is reasonable and can

be expected. We further demonstrate the efficacy of dual-path base

network for general classification. As shown in Figure 15, dual-path

base network performs still outstanding consistently in general clas-

sification on all RF datasets. Figure 15 (albeit not a fair comparison

due to the separated datasets for different RF sensing techniques)

also sheds a light on the intrinsic differences among the three RF

signals. Wi-Fi with narrowband cannot provide a high resolution

in time domain, but Doppler shift can still be retained in frequency

domain. Therefore, the overall performance of Wi-Fi is worse than

the others, but the accuracy in frequency domain is better than that

in time domain. Resorting to the power of wideband, FMCW and

IR both achieve better performance due to a higher time resolution,

yet FMCW slightly outperforms IR thanks to a higher tx power.

4.4.2 Superiority of RF-Net over Baselines. The comparison results

for RF-Net on Wi-Fi, FMCW, and IR are listed in Figures 16, 17,

and 18. We observe that our proposed RF-Net network has proved

the superiority over baselines on all three RF sensing techniques. In

particular, compared RF-Net with RF-Net*, overall performance is

enhanced by RF metric module and relatively steady. It highlights

the efficacy of RF metric module. This performance improvement

gives credit to the trainable linear mapping of RF metric module.

As demonstrated in Section 3.2.1, its convex loss function should

allow the RF metric module to learn an optimal metric for RF-Net.

One may argue that all three RF techniques achieve a rather low

accuracy, but this is the best one may obtain so far when adapting to

new environments with very few labelled observations; in fact, our

performance is already better than that for image recognition [8],

possibly thanks to the depth information obtained by RF sensing.

In Figure 19, we further plot the accuracy density plot of RF-Net

along with the dual-path base network and all the baselines. The

best performance is highlighted in bold. The density plot depicts the

accuracy distribution on all three RF datasets with 𝑁𝑠 = {1, 2, 3}. In-
tuitively, dual-path base network notably outperforms its baselines.

However, it is still far below the expectation. Compared with dual-

path base network, the density plot of RF-Net along with its meta-

learning baselines and fine-tuning baselines exhibit some notable
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Figure 16: Overall comparison results for RF-Net evaluation
on Wi-Fi dataset.
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Figure 17: Overall comparison results for RF-Net evaluation
on FMCW dataset.
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Figure 18: Overall comparison results for RF-Net evaluation
on IR dataset.

right skew. It indicates that RF-Net and its baselines as expected en-

tail significantly performance improvement of the implanted base

network. Nevertheless, RF-Net boosts the performance maximally

among them: it has greatly helped the base network adapting to

new environment with even a single observation.

4.4.3 Wi-Fi vs. IR vs. FMCW. To further evaluate the performance

on each RF sensing dataset, we first plot the performance of the

proposed networks and their baselines on Wi-Fi, IR, and FMCW

in Figure 20. Meanwhile, we further generate a more representa-

tive performance heatmap in Figure 21 to help visualizing varying

degrees of improved performance by RF-Net in each RF sensing

dataset. From these two figures, we observe that RF-Net achieves

the highest overall performance in all datasets, and the performance

of all concerned networks differ significantly across different RF
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Figure 19: Accuracy density plot of all evaluated networks.
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Figure 20: Performance on RF sensing types.

sensing datasets. One curious observation on the evaluation over IR

dataset is that all networks seem to achieve similar performances

with and without meta-learning. The reason is that the intrinsic

advantage of IR being not sensitive to environment impact (thus

allowing the environment-free features to be captured via base

network), yet RF-Net still performs the best among all networks.

To summarize, based on the average accuracy shown in Figures 20

and 21, our proposed RF-Net are demonstrated to offer the most
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Figure 21: Performance heatmap: accuracy improvement
from SPATIAL-SEP, while a darker color denotes a higher
accuracy improvement.
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Figure 22: Impact of number of environments.

robust generalization that may fit all data intrinsic properties of all

RF signals.

4.4.4 Impact of Number of Environments. We examine networks

from the perspective of environmental diversity as well. The mo-

tivation is to explore how many environments could be handled

for each network. We report average accuracy of RF-Net and its

baselines on Wi-Fi dataset with 80, 100 and 120 environments in

Figure 22. With the number of environments increasing, we observe

that the performance of both fine-tuning and meta-learning base-

lines (MAML and PN) have clearly dropped. Our RF-Net show more

steady trends. This performance indicates that RF-Net can deal with

more environments without sacrificing performance severely, i.e.,

it is a more robust approach.

5 CONCLUSION
Based on the study of representative RF sensing techniques along

with major meta-learning approaches, we have proposed RF-Net, a

meta-learning based neural network for one-shot RF-based HAR; it

contributes to the capability of being fast adapted to new environ-

ments with a single observation. RF-Net consists of a meta-learning

framework that involves a parametric RF-specific module for train-

ing a powerful distance metric, and a dual-path base network that

fully exploits the high-dimensional features contained in the RF sig-

nal matrix. We have conducted extensive experiments on all three

RF sensing techniques. These experiments have demonstrated the

efficacy of our proposed RF-Net and dual-path base network.

As a potential future direction, we are looking into extending

our meta-learning frameworks to various sensing applications that

can be heavily affected by environment changes. These applications

include, among others, radio frequency sensing for, e.g., vibration

detection and indoor localization [9, 61, 68], acoustic sensing for

similar purposes [6, 7, 40], and visible light sensing for, e.g., in-

formation decoding [64, 67] and occupancy inference [65, 66]. As

these applications may involve rather different sensing methodolo-

gies and modalities, both the base network and the meta-learning

framework will need to be substantially revamped.
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